2\

Home
Automatlon

with

Raspberry Pi.

Projects Using Google Home", Amazon Echo,
and Other Intelligent Personal Assistants

‘il Donald Norris
%

Home Automation
with Raspberry Pi”

Projects Using Google Home™,
Amazon Echo®, and Other
Intelligent Personal Assistants

Donald Norris

New York Chicago San Francisco Athens London Madrid

Mexico City Milan New Delhi Singapore Sydney Toronto

Copyright © 2019 by McGraw-Hill Education. All rights reserved. Except as permitted
under the United States Copyright Act of 19776, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer

system, but they may not be reproduced for publication.

ISBN: 978-1-26-044036-2
MHID: 1-26-044036-2

The material in this eBook also appears in the print version of this title: ISBN: 978-1-
26-044035-5, MHID: 1-26-044035-4.

eBook conversion by codeMantra

Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have

been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact a

representative, please visit the Contact Us page at www.mhprofessional.com.

McGraw-Hill Education, the McGraw-Hill Education logo, TAB, and related trade dress
are trademarks or registered trademarks of McGraw-Hill Education and/or its affiliates
in the United States and other countries and may not be used without written
permission. All other trademarks are the property of their respective owners. McGraw-

Hill Education is not associated with any product or vendor mentioned in this book.

Information contained in this work has been obtained by McGraw-Hill Education from
sources believed to be reliable. However, because of the possibility of human or

mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill

Education does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained

from the use of such information.
TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill Education’s prior consent.
You may use the work for your own noncommercial and personal use; any other use of
the work is strictly prohibited. Your right to use the work may be terminated if you fail

to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY,
ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING
THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that
its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission,
regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill
Education has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill Education and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages
that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any
claim or cause whatsoever whether such claim or cause arises in contract, tort or

otherwise.

Preface

THIS BOOK IS ALL ABOUT HOW YOU, as a maker, can help automate your home or
business to both improve the quality of your life and coincidentally achieve some
efficiencies. The latter may be actual energy savings or may be simply improving the
everyday flow of personal activities. I also included using the Raspberry Pi as a
principal controller in most of this book’s projects because it so inexpensive yet
provides amazing capabilities and functionalities when implementing home

automation (HA) solutions.

I have written about HA projects in several of my earlier maker books, which also
included the Raspberry Pi as the main controller. However, in this book, I have
included some rather extensive discussions regarding personal voice assistants and
their role in HA projects. This type of device is fairly new to the marketplace and
includes the rather well-known Amazon Echo and Google Home devices. The inclusion
of these devices in this book was predicated on my realization that they are rapidly
becoming the consumer’s favorite choice when interacting with HA systems. The days
of turning a thermostat dial or flipping a light switch are rapidly declining given the

ubiquitous nature of these new voice-activation devices.

The first few chapters of this book are devoted to exploring how various voice-
activation devices function with the Raspberry Pi. There are significant differences
between how Amazon Echo devices interact with the Raspberry Pi and how Google
Home devices interact. I try to explain how you can successfully interface with both
device types, while at the same time I point out the pros and cons of the two
approaches. I am confident that if you successfully follow my multiple demonstrations,

you will become quite adept at interfacing with either device class.

Chapter 5, which follows all the material on voice-activation devices, concerns HA
operating systems, which are an extremely useful adjunct in the implementation of a
workable HA system. I provide a good survey of all the major, currently available HA
operating systems (OSs), but such surveys are highly volatile, and there will likely be
significant changes by the time this book is published. Nonetheless, the fundamentals

of a good HA OS are unchanging, and, hopefully, my discussion in this area will provide
you with some good guidance regarding the selection of an appropriate OS that meets
your requirements. Chapter 5 also includes a working demonstration of one of the most
popular HA OSs, which should help you really understand how this software functions
and let you make a good decision on whether or not to pursue this option as an HA

solution.

Chapter 6 describes a Z-Wave-enabled HA system. Z-Wave is a very popular way to
create communications links among separate or distributed HA components. There are
quite a few Z-Wave-compliant device manufacturers in business offering many
different and varied Z-Wave-enabled components. I feel that it is important for you to
be aware of this particular communications protocol because of its impressive
popularity and many readily available devices and components. I also provide a chapter
demonstration in which I interface a Raspberry Pi directly into a Z-Wave system. This
allows you to create your own custom control scripts for many different Z-Wave

devices.

An open-source alternative to the Amazon Echo and Google Home devices is the topic
of Chapter 7. The open-source device I discuss is named Picroft, and it is a Raspberry
Pi—hosted variant on a parent device named Mycroft. Basically, Mycroft and Picroft are
synonymous: Mycroft is an actual open-source device, which can be purchased, and
Picroft is the software image loaded onto a Raspberry Pi. In reality, the Mycroft device
contains a Raspberry Pi running precisely the same software as that contained in the
Picroft image. Given this fact, I constantly interchange the names Mycroft and Picroft
in the chapter without a loss of understanding or context. My purpose in discussing
Myecroft is to present you with a lower-cost option to the Amazon and Google devices.
However, the cost difference is really quite marginal when considering that you will
need both an external USB microphone and speaker/amplifier to make up a working
Picroft system. If you add all these extra costs to the cost of a Raspberry Pi, you will
likely pay about the same as you would if you purchased an Amazon Echo Dot or a
Google Home Mini. However, if the maker in you is up to the task, it is always fun to

build your very own open-source voice assistant.

A trip into the artificial intelligence (AI) realm is the subject of Chapter 8. There I cover
the principles that govern how Al fuzzy logic (FL) may be applied to a home heating,
ventilation, and air-conditioning (HVAC) system. I discuss in great detail how to use a
multistep procedure to design a workable FL system. The good news is that no
additional or expensive components are required for a Raspberry Pi—-powered HVAC
FL controller. The only requirement is to create and load the FL code into the

Raspberry Pi. There is an actual FL. demonstration that simulates how a real HVAC

system would function. I use light-emitting diodes (LEDs) to indicate when appropriate

heating and/or cooling commands are generated.

Chapter 9 is a kind of a catch-all where I cover how to use a variety of sensors seen
commonly in several different HA systems, including HVAC and security-type systems.
This chapter provides reasonable insights into what to consider when selecting a sensor
and how to design appropriate interfaces between the sensors and the controller

(which, of course, in this chapter is a Raspberry Pi).

Chapter 10 describes an HA security system that employs a remotely located sensor
from the Raspberry Pi main controller. I use a very nice wireless data link system
named XBee, which provides the capability of sending not only a binary on/off signal
but also actual sensor data values, if needed. The XBee subsystem is controlled by an
Arduino Uno microcontroller, which provides me with an opportunity to introduce the
coprocessor concept into our discussion of HA system design. Sometimes a Raspberry
Pi cannot “do it all” and needs some assistance. Timing is a very important feature for
any communications link. However, the Linux OS running on a Raspberry Pi is
asynchronous, meaning that there is no guarantee that the computer will be available
to process incoming communications data. Meanwhile, the Uno does provide the

immediate and continuous attention required by the communications link.

Chapter 11 is a brief one in which I discuss some important ideas on how to integrate
separate HA systems so that the user has a “unified” view of an overall HA system and
how to provide one-stop control. I also discuss how scripts or macros executed on an

HA controller can significantly improve the overall HA user experience.

Donald Norris

Designing and Building Home Automation Projects

I LIKE TO THINK OF THIS CHAPTER as providing the prerequisite knowledge to
allow you to build home automation (HA) projects as detailed in this book and other
sources. It also seems that learning about the “big picture” is always a useful approach
before digging into specifics and fine-grain details. The next section details a

generalized approach to designing and implementing an HA solution.

I will include a Parts List at the beginning of each chapter so that readers can identify
what parts will be required to duplicate the projects and/or demonstrations presented
in that chapter. The Parts Lists also provide suggested sources that are current at the
time of this writing. Actual parts that are needed will depend on what each reader
already has in his or her parts bin. This first list also includes parts and components
that are common to other Parts Lists, such as power supplies and HDMI cables. I will

not include these common items in later Parts Lists because they are self-evident.

Parts List

Item Model Quantity | Source

Raspberry Pi 3 Model B 1 mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

T-Cobbler 40-pin P/N 2029 1 adafruit.com

Solderless breadboard with 830 tie points | Commodity 1 mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

5-volt (V), 2.5-ampere (A) power supply Commodity 1 mcmelectronics.com
with micro USB connector adafruit.com
digikey.com
mouser.com
farnell.com

HDMI-to-HDMI cable, 1 meter (m) Commodity 1 amazon.com

LEDs, various colors

Commodity

Varies

mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

330-ohm (Q), Ya-watt (W) resistor

Commodity

Varies

mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

2N3904 NPN transistor

Commodity

Varies

mcmelectronics.com
adafruit.com
digikey.com
mouser.com
farnell.com

Jumper wire package

Commodity

adafruit.com

USB keyboard

Amazon Basic

amazon.com

USB mouse

amazon.com

HDMI monitor Commodity amazon.com

Google AlY Voice Kit for Raspberry Pi 3602

1
1
Amazon Basic 1
1
1

adafruit.com

GENERALIZED HA DESIGN APPROACH

The first step in any HA project, except for the most trivial one, is to define the
requirements. This means that definite and detailed project requirements should be
written in a clear and nonambiguous manner. For example, simply stating “to turn on
the lights” would be incorrect because there is no mention of what specific lights are to
be turned on or activated, how they are to be activated, or how long they should stay on.
A better version for the requirements statement might be “to turn on the front porch
lights for one minute by voice activation.” In this case, a specific light is identified as
well as an operational time and an activation mode. Each of the phrases in the
requirement statement will naturally lead to specific HA implementations. Creating
definitive, clear, and precise requirements should help you to develop appropriate HA

solutions to meet your individual needs in an HA system.

The architecture of an HA solution depends very much on the device types to be
controlled and their locations within the home. For instance, controlling a thermostat is
a very different process from activating a light. Different control technologies are
involved in each case, which employ different means of interfacing with a particular
technology. I will also be using a Raspberry Pi as the standard microcontroller for all
the HA projects in this book, which will help to minimize any confusion regarding
interfacing or data-communication issues. However, I will be using several different
control technologies because some HA devices are widely separated, which typically
requires a wireless control technology, whereas other devices are close to the controller,

which might best be served by using a direct-wired approach. In a few select cases, I

will use wired control lines for dispersed devices but only use two wires for the control

data signals.

One very important design feature that you always must keep in mind when designing
an HA system is safety. Any controlled device that uses a mains supply should always
be controlled with a certified device that is appropriate to the country where it is being
used. In the United States, this means that the mains control device should have
Underwriters Laboratories (UL) approval. There are similar rating agencies in other
countries where HA projects are designed and implemented. Using certified control
devices will raise the cost of a project, but there is truly no other option when it comes
to ensuring the safety and well-being of you and your family. None of this book’s
projects involve controlling mains-connected devices other than with UL-approved

products.

Another important HA design feature that must be addressed is how the user will
interact with the system. I mentioned voice activation in the earlier example because
this approach seems to be the most popular at present. HA systems implemented just a
few years ago relied on keypads and relatively simple liquid-crystal display (LCD)/ light
emitting diode (LED) electronics to signal user interaction. Of course, most true home-
brew HA systems used and still do use a traditional workstation coupled with a
monitor, keyboard, and mouse. I will be using both the workstation and voice-
recognition approaches in this book. Using a workstation is very advantageous when it
comes to designing and developing specific HA solutions. The voice-recognition unit, or
assistant, can then be integrated into the system once the initial design has been proven
to work as expected. I will explain how the Google Voice Assistant functions a bit later
in this chapter, but first I need to explain how to set up a Raspberry Pi such that it can

function as an HA system controller.

RASPBERRY Pl SETUP

You will need to set up a Raspberry Pi (RasPi) in order to duplicate this book’s projects.
I will show you how to set up a RasPi 3 Model B as a workstation that will host the
applications required to implement a variety of HA solutions. Figure 1-1 shows the
RasPi 3 Model B used in this book.

e Ch4
=
Raspberey Pi'3 Madel B V1.2 ‘H‘:‘M Em
"c: Raspberry PI 2015 - =

Made lw PRC

DISPLAY 5

E;’ riz
V- FCC 10: 2ABCE-RPIIZ
s IC: 20052-RP132

=
=
-3

=
]
-y
=
-
-
e
=3
—
-y
=1
-

u

o] rﬁmu-_':;.

|uu|!E!EI‘!!H].,£

CAMERA

-
HerreEEsserEEn

g -
=
s
ey

Raspberry Pi 3 Model B.

I should mention that a Raspberry Pi 3 Model B+ was just introduced by the Raspberry
Foundation at the time of this writing. It is essentially the same as the Model B except
for a slight speed improvement and some improvements in the wireless functions, none
of which will have any impact on this book’s projects. You can use either the B or B+

models without any software or hardware modifications.

I will not go into much detail about what makes up a RasPi single-board computer
because that has already been adequately covered by many readily available books. I
refer you to two of my earlier books, Raspberry Pi Projects for the Evil Genius and
Raspberry Pi Electronics Projects for the Evil Genius, where I discuss in detail the
architecture and makeup of the RasPi series of single-board computers. In this book, I
use a RasPi 3 Model B in a workstation configuration, which is simply having the RasPi
connected with a USB keyboard, USB mouse, and HDMI monitor. The RasPi is
powered by a 2.5-A, 5-V supply with a micro USB connector, as indicated in the Parts
List. Now I will discuss how to set up secondary storage for a RasPi because this is

critical to its operation.

A RasPi does not require a disk drive for storing and retrieving software applications
and utilities, which includes an operating system (OS). The recent designs, within the
last few years, all rely on using a pluggable micro SD card to serve this secondary

storage function. It is also possible to connect a traditional disk drive to a RasPi, but it

will only serve as an auxiliary storage device and not as the primary, persistent storage
for the OS and boot partition. Next, I will show you how to download and install an OS
on a micro SD card such that your RasPi can be booted to serve as a functional HA

microcontroller.

The simplest way to obtain a programmed micro SD card is to purchase one from one of
the RasPi suppliers listed in the Parts List. These cards are ready to go and only need to
be configured to match your particular workstation configuration, which includes your
private WiFi network. I will discuss the configuration process in a later section, but first
I want to show you how to create your own micro SD card in case you do not have the

means or desire to buy a preprogrammed card.

The software to be loaded is known as an image and is freely available from several
online websites, with the recommended one being the Raspberry Pi Foundation site at
raspberrypi.org. You will need to download the latest image from the Downloads
section of the website. Two versions of the disk image are available. The first version is
named NOOBS, which is short for “New Out Of the Box Software.” The current NOOBS
version available at the time of this writing is v2.7. This image, in reality, is a collection
of files and subdirectories that can be downloaded either using the BitTorrent
application or simply as a raw Zip file. The BitTorrent and Zip downloads are
approximately 1.2 gigabytes (GB) in size. The extracted image is 1.36 GB in size, but the
final installed size is over 4 GB. This means that you will need to use at least an 8-GB
micro SD card to hold the final image. However, I strongly recommend that you use at

least a Class 10 card to maximize the data throughput with the operating RasPi.

The second image version available is named Raspbian, which is a Debian Linux
distribution especially created for the RasPi. The currently available image is named
Stretch. This version is also updated quite frequently, but I will show you how to ensure
that you have the most up-to-date version in the configuration section. The Raspbian
version may be downloaded using BitTorrent or as a Zip file with final image sizes
similar to the NOOBS image.

A micro SD card must be loaded with the desired image after that image is downloaded.
There are two ways to accomplish this task depending on the version downloaded. I

discuss these ways in the following sections.

Writing the NOOBS Image to a Micro SD Card

The easiest way to create a bootable micro SD card is to use the downloaded and

extracted NOOBS image. In this case, you will first need to format the micro SD card

using an appropriate application compatible with your host computer. For Windows
and Mac machines, use the following link to get the formatter program:

www.sdcard.org/downloads/formatter_4/.

I used the Mac version without any problems. However, it is imperative that your micro

SD card is properly formatted or else the NOOBS installation will not work.

The downloaded NOOBS file is named NOOBS_v2_7 0.zip, and when it is fully
extracted, it is in a folder named NOOBS_v2_7 0. You must go into the folder and

copy all the files and subdirectories in that folder, as shown in Figure 1-2.

o0® [NOOBS v2_70
< 2 Bmio # = Q Se
Back/Forward View Action Amrange Share Edit Tags Search
Mame Date Modified Size ~ Kind
> Ij 05 March 31, 2018 at 9:19 AM 1.32 GB Folder
recovery.rfs March 14, 2018 at B:38 AM 28.6 MB Document
& recoverylZimg March 14, 2018 at B:38 AM 2.9 MB MNDIF Disk Image
& recovery.img March 14, 2018 at B:38 AM 2.9 MB MDIF Disk Image
recovery.elf March 14, 2018 at B:38 AM 672 KB Document
> D overlays March 14, 2018 at B:37 AM 274 KB Folder
! bootcode.bin March 14, 2018 at B:38 AM 52 KB MacBin...archive
> D defaults March 14, 2018 at B:38 AM 40 KB Folder
bem2710-rpi-3-b-plus.dtb March 14, 2018 at B:38 AM 18 KB Document
bem2710-rpi-3-b.dth March 14, 2018 at B:38 AM 18 KB Document
bem2709-rpi-2-b.dtb March 14, 2018 at B:38 AM 17 KB Document
bem2710-rpi-cm3.dtb March 14, 2018 at B:38 AM 17 KB Document
bem2708-rpi-0-w.dtb March 14, 2018 at B:38 AM 16 KB Document
bem2708-rpi-b-plus.dtb March 14, 2018 at B:38 AM 16 KB Document
bem2708-rpi-b.dth March 14, 2018 at B:38 AM 16 KB Document
bem2708-rpi-cm.dth March 14, 2018 at B:38 AM 15 KB Document
b riscos-boot.bin March 14, 2018 at B:38 AM 10 KB MacBin...archive
INSTRUCTIONS-README.txt March 14, 2018 at 8:38 AM 2KB Plain Text
BUILD-DATA March 14, 2018 at B:38 AM 302 bytes TextEdi...cument
recovery.cmdline March 14, 2018 at B:38 AM 98 bytes Document
RECOVERY_FILES_DO_NOT_EDIT March 14, 2018 at B:38 AM Zero bytes TextEdi...cument

Contents of NOOBS_v2_7_o folder.
All the folder contents must be pasted into the formatted micro SD card.

IMPORTANT: Do not simply copy the NOOBS_v2_7_o0 folder itself. You must copy
the folder contents onto the SD card or the card will not be bootable by the RasPi.

Writing the Raspbian Image to a Micro SD Card

Creating a Raspbian image is slightly different from the NOOBS process. In this case,
you do not have to format the micro SD card prior to writing the image. That part of the

process is automatically done for you by the application that writes the image to the

card. You will need to set up an appropriate application based on your host computer.
For a Windows machine, I highly recommend that you use the Win32DiskImager
available from

https://sourceforge.net/projects/wing2diskimager/files/latest/download.

The download is a Zip file, which will need to be extracted prior to use. All you need to
do is run the application and select where the disk image is located, as well as the
appropriate micro SD card logical file letter. Figure 1-3 shows my configuration screen

for writing the Raspbian Stretch version to a micro SD card on a Windows machine.

%2 Win32 Disk Imager - 1.0 — O x

Image File Device

l'nlnadsflﬂ 17-11-29-raspbian-stretch/2017-11-29-raspbian-stretch. img|| [O:Y -

Hash

Mone * | | Generabe Copy

[] read Only Allocated Partitions

Progress

Cancel Read Write Verify Only Exit

Wing2DiskImager screenshot.

I recommend using the Etcher program if you are using a Mac to load the disk image. It
is available from https://etcher.io/. This application functions in a very similar fashion
to the Wing2DiskImager program. Figure 1-4 is a screen shot of it being run on my
MacBook Pro.

2018-03-1...retch.img /dev/disk3

‘FETCHER @'resm.lo

Etcher screenshot.

The next step in the setup process is to configure the image, once you have loaded it
onto your micro SD card. The next two sections detail how to configure the NOOBS

image first followed by the Raspbian image.

Configuring the NOOBS Image

The first step in configuring the NOOBS image is to set up a RasPi as a workstation. Do
not attach the micro USB power supply to the RasPi before inserting the micro SD card
holding the NOOBS file into the RasPi card holder. Ensure that the card is inserted
upside-down, meaning that the printed side of the card is facing down. You ordinarily
could not incorrectly insert the card unless you attempted to use unreasonable force, in

which case you would likely break the holding mechanism.

Attach the USB power cable once the micro SD card is inserted, and you will see the

initial screen, as shown in Figure 1-5.

g0 & e =

install (iy Edit config (e} Wifi netwarks (w) Online help (i} Exit (Esc)

Rasphbian [RECOMMENDED] !

A port of Deblan Stretch for the Raspberry Pi (full desktop version)

~ Disk space

Meeded: 4541 MB
Ayvailable: 13757 MB

Initial NOOBS power-on screenshot.

Only one OS selection is shown in this particular downloaded image. Multiple OS
selections were shown in earlier NOOBS versions, which leads me to believe that the
Raspberry Pi Foundation folks have decided that the traditional Raspbian Debian
distribution is their OS of choice. In any case, simply press the Enter key to fill in the
checkbox next to the Raspbian selection. Next, you must press the “i” key to start the

actual installation. Figure 1-6 shows the screen for the ongoing installation.

———————

Welcome to Raspberry Pi

Please wait while the software is installed on your SD
card ~ this will take a few minutes.

Raspbian: Creating filesystem (extd]

fl i —— - m 2
17 M8 of 4138 MB written (3.8 MB/sec)

Raspbian installation screenshot.

The whole installation process takes a while, depending mainly on the data throughput
speed of your micro SD card. This is why I strongly recommend that you use a Class 10

card to minimize tasks such as this installation. This installation took about 20 minutes
when I did it. You should see the installation completion dialog box (Figure 1-7) after

the process has completed.

OS(es) installed

: il) 0S(es) Installed Successfully
X,

For recovery mode, hold {}Shh‘_t

Installation completion dialog box.

The Raspbian OS has not yet been completely configured, even though the initial
Raspbian installation has finished. The OS must now be configured to your particular
requirements, such as locale and network, using a useful utility named raspi-config.
This utility is provided in the initial downloaded image. You run the raspi-config utility
by opening a terminal window and entering the following command (as shown in

Figure 1-8):

File Edit Tabs Help

pi@raspberrypi

Starting the raspi-config utility.

sudo raspi-config

Figure 1-9 shows the opening screen after this utility begins running.

File Edit Tabs Help

1 Change User Password Change password for the ci

2 Network Options configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett

5 Interfacing Options Configure connections to peripher

6 Overclock Configure overclocking for your P

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest we

9 About raspi-config Information about this configurat
<Select> <Finish>=

The raspi-config initial screenshot.

There are nine selections, as you can see in the figure. Each one contains one or more
configuration settings that you can use to address your requirements. In this initial
setup, I will be using three of the selections to configure the key settings for my
configuration. I recommend that you initially duplicate these settings. However, you
should feel comfortable in changing different settings as you gain additional expertise
with the RasPi.

The first selection I chose was Localization Options. Figure 1-10 shows the new menu
that appears when you select this option. The menu selections are straightforward, and
they allow you to customize the RasPi configuration to suit your own country and
keyboard setup. The keyboard configuration is particularly important because you will
likely become frustrated trying to accomplish the WiFi configuration without changing

the keyboard layout to match your country of origin.

File Edit Tabs Help

! Raspberry Pi Software Configuration Tool (raspi-config) !

I1 Change Locale up language and regional sett

I2 Change Timezone Set up timezone to match your loc

I3 Change Keyboard Layout Set the keyboard layout to match

I4 Change Wi-fi Country Set the legal channels used in yo
<Select> <Back=

_ 4

Localization Options menu selections.

The Interfacing Options menu is shown in Figure 1-11. This menu has eight selections,
as shown in the figure. Which options you enable will depend on the types of devices
you employ in your RaspPi system. I recommend enabling the following options to

match the projects and procedures discussed in this book:

File Edit Tabs Help

Raspberry Pi1i Software Configuration Tool (raspi-config)
1 Camera Enable/Disable connection to the
P2 SSH Enable/Disable remote command 1lin
P3 VNC Enable/Disable graphical remote a
P4 SPI Enable/Disable automatic loading
P5 12C Enable/Disable automatic loading
P6 Serial Enable/Disable shell and kernel m
P7 1-Wire Enable/Disable one-wire interface
P8 Remote GPIOD Enable/Disable remote access to G
<Select> <Back>

Interfacing Options menu selections.

m Camera
m SSH

m SPI

m [2C

m Serial

m 1-Wire

You can easily add or subtract interfacing options at any time by rerunning the raspi-
config utility. In any case, adding an interfacing option only minimally increases the
size of the overall OS. Also note that enabling an interface only installs the associated
driver(s) for that particular device. You will still need to install some additional
application software to make a device fully functional within an HA system. I will
discuss this application software at the appropriate time when dealing with a specific
HA device.

The remaining step in the configuration process is to connect the RasPi to your home
WiFi network. This is readily accomplished by modifying an existing configuration file
to connect the RasPi to your network. Open a new terminal window, and enter the

following;:

sudo nano /etc/wpa supplicant/wpa

supplicant.conf

You will then need to enter the following code snippet into the file following the last line
in the file:

network={
ssid="<your wifi name>"

psk="<your wifi password>"

Figure 1-12 shows my modified file with the WiFi network name (ssid) and placeholder
for the password (psk). Press CTRL-O and then ENTER to save the modified file. Then

press CTRL-X to exit the nano editor application.

File Edit Tabs Help
GNU nano 2.7.4

File: /etc/wpa_supplicant/wpa_supplicant.conf Modified

t GROUP=netdev

Modified wpa_supplicant.conf file.

You need to reboot the RasPi to finish configuring the WiFi. Enter the following in the

terminal window to reboot the computer:
sudo reboot

I recommend that you enter the following command into a terminal window to check

whether the RasPi has connected to your home network:
ifconfig

Figure 1-13 shows the result of entering this command on my RasPi system.

File Edit Tabs Help

spberrypi if;

 RUNNIN

pi@raspberrypi

The ifconfig command display.

You should be able to see in the wlan0 section that a local IP addressof 192.168.0.6
was assigned to the RasPi by the home WiFi router. This assignment confirms that the
RasPi is able to be connected to the Internet. Check to see that your home router is set
up for DHCP in case you do not see an IP address similar to the one shown in the
figure. Also recheck that you entered the correct information into the
wpa_supplicant.conf file. There is no error check for this edit, and the Raspbian OS will

simply not connect if you have made an error in this edit.

At this point, you have successfully set up and configured your RasPi system. You next
need to update and upgrade your system to ensure that the latest Raspbian OS software

is installed.

Updating and Upgrading the Raspbian Distribution

The Raspbian Linux distribution is always being improved, as mentioned earlier. It is
very easy to ensure that you have the latest updated and upgraded distribution once
you have established Internet connectivity. Enter the following command in a terminal

window to update the installed OS:
sudo apt-get update

The update action changes the internal system’s package list to match the current

online package list. It does not actually change any of already installed packages if they
are obsolete or outdated. Those changes are effected by entering the following

command in a terminal window:
sudo apt-get upgrade

The update is reasonably quick if that original installed distribution is not too old.
However, the upgrade action can take quite some time if a lot of outdated packages are

already installed.

Just remember to always update prior to upgrading. All the projects in this book were
created using an updated and upgraded Stretch Raspbian distribution. I have found
that failing to update and upgrade can sometimes lead to some odd errors and system

failures that are unexpected and puzzling.

You should have a completely functional RasPi system at this point in the installation
and configuration process. The next section describes the general-purpose
input/output (GPIO) portion of the RasPi, which is the primary means through which a
RasPi can digitally control an HA system.

GENERAL-PURPOSE INPUT/OUTPUT

General-purpose input/output (GPIO) is the fundamental means by which a RasPi can
either output or input a digital signal. A digital signal is any bistable signal, which is
either on or off. The on state is typically represented by a 3.3-V level and the off state by
a 0-V level. The 3.3-V level is the absolute maximum voltage that may be input into a
RasPi without causing permanent damage. The actual voltage range at which a RasPi
can sense an on or 1 signal is approximately 2.7 to 3.3 V. Similarly, the off or o state is
approximately 0 to 0.2 V. Any voltage present on a GPIO input pin will sense a 0 with a

voltage at or less than 0.2 V.

All the RasPi GPIO pins are part of the J8 header, which consists of a double row of 20
pins for a total of 40 pins. These pins and the associated GPIO designations are shown
in Figure 1-14. This figure will be very useful to you when you attempt to duplicate this
book’s projects. You should note that a few additional pins on the header provide 3.3-
or 5-V power as well as multiple ground connections. There are also two DNC pins,
which is short for “Do Not Connect.” In reality, the DNC designation only refers to the
GPIO function. It turns out that these two pins definitely have specific uses as alternate

function pins, which I discuss later.

Raspberry Pi 3 Model B

J8 GPIO Header
Pin No.

1 2 Gy
GPIO2 3 4 K{Y
GPIO3 5 6 (g
GPIO4 7 8 GPIO14

9 10 GPIO15
GPIO17 11 12 GPIO18
GPIO27 13 14

GPIO22 15 16 GPIO23
17 18 GPIO24
GPio10 19 20 NN
GPIO9 21 22 GPIO25
GPIO11 23 24 GPIO8
25 26 GPIO7
DNC 27 28 DNC
GPIO5 29 30
GPIO6 31 32 GPIO12
GPIO13 33 34
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

D) 39 40 GPIO21

GPIO header pin layout.

There are a total of 26 GPIO pins, which may be configured as either input or output at
any given moment in time. A GPIO pin cannot simultaneously be both an input and an
output. I have found that 26 GPIO pins are sufficient for any RasPi project that I have

designed or duplicated. I believe that you will also come to the same conclusion.

One additional comment is necessary regarding how the GPIO pins are identified. You
will notice in Figure 1-14 that all the GPIO pins are designated as “GPIOxx,” where “xx”
is a number ranging from 4 to 27. This identification is known as the manufacturer’s
pin ID or the BCM mode in Python programming terms, where BCM is the Broadcom
manufacturer’s abbreviation. Every pin in the figure also has a Pin No. designation,
which is also called the physical pin number. Various pieces of device application
software, which I mentioned earlier, sometimes use the physical pin IDs, whereas
others may use the BCM designations. There is even another suite of application
software named wiringPi, and it has its own unique pin IDs that are separate from the
physical and BCM designations. This will become a very important issue in the next

section, in which I provide a GPIO demonstration.

All this pin ID confusion is a natural consequence of open-source development, where

there are really no enforced standards for such items as GPIO pin identification. You

can rest assured that I will be quite clear regarding which GPIO pin ID to use in all my

demonstrations and projects.

GPIO DEMONSTRATION

In this demonstration, I will show you how to control a LED using a single GPIO pin.
This control action is made possible by an application named wiringPi, which provides
a simple utility to turn on or off a LED directly connected to a GPIO pin. You will first

need to install the wiringPi software, which is done as follows:
1. Install the git application. In a terminal window, enter the following:
sudo apt-get install git

NOTE: If you see any errors here, ensure that you have updated and upgraded the
Raspbian distribution as discussed earlier. However, you may also discover that the git

application has already been installed by viewing the following line:

git is already the newest version

(1:2.11.0-3+debian?)
2. Download wiringPi using git. Enter the following in a terminal window:

git clone git://git.drogon.net/

wiringPi

NOTE: Ensure that you enter drogon and not dragon, a common mistake that I have

previously made.

3. Build and install the wiringPi application. Enter the following commands in a

terminal window:

cd ~/wiringPi

./build

4. Check and test the wiringPi installation. Enter the following to check the

installation:

gpio -v

gpio readall

Figure 1-15 shows the results of entering the last set of commands.

Screenshot for the check and test of the wiringPi installation.

The gpio -v command shows that wiringPi version 2.46 is installed and running.
Your version may be slightly different depending on when you downloaded and
installed the wiringPi application. What is more interesting is to view the results of the
gpio readall command in Figure 1-15. The first thing you will probably notice is
that there are different names for some of the GPIO pins than in the naming shown in
Figure 1-14. This is so because many GPIO pins have alternate functions in addition to
their default GPIO designations. For example, physical pins 3 and 5 are designated as
GPIO2 and GPIOs3 in Figure 1-14, whereas these same pins are designated as SDA.1 and
SCL.1 in Figure 1-15. The designations SDA.1 and SCL.1 are for “serial data bus 1” and
“serial clock 1,” respectively. These control signals are associated with the 12C bit-serial
protocol which is further discussed below along with some other supported protocols.
The key point to remember is that alternative pin functions can be programmatically
assigned to various GPIO pins to suit particular programming requirements. I
recommend that you have both Figures 1-14 and 1-15 available when you are connecting
devices to the GPIO header to help remind you of both the GPIO and alternate function

designations.

There are also two columns in Figure 1-15 labeled “BCM” and “wPi” that are part of the

confusing GPIO pin identification mentioned earlier. The BCM is the manufacturer’s
pin ID, whereas wPi is the corresponding wiringPi ID. You must use the wPi pin ID
when programming a wiringPi application. Again, this situation frequently arises in
open-source development, and you, as a competent developer, must adjust to the

confusion.
Demonstration Hardware Setup

Figure 1-16 shows a schematic for controlling a LED using a single RasPi GPIO pin. The
pin selected was wiringPi ID o0, which is also physical pin 11 and BCM ID GPIO17.

Physical Pin # 11

BCM # 17 —A\/V H
Wiring Pi#O\ 330 0hm LED \J] Ground
X J8
RasPi 3

Demonstration circuit schematic.

The series 330-Q resistor shown in the figure is used to limit the current supplied by
the GPIO pin. In this case, the current draw would be approximately 8 mA, assuming
that the LED has a 0.7-V drop across it when forward biased. This current draw is well
within the 15-mA maximum specification limit for a RasPi GPIO pin. The LED cathode

is also connected to ground to complete the circuit.

Figure 1-17 is a Fritzing diagram that shows the main components of the circuit,
including a T-Cobbler, which consists of a flat ribbon cable with one end terminated
with a double-row header socket that plugs into the RasPi GPIO header. The other end
has a labeled plug that fits into a standard solderless breadboard, as shown in the
figure. I have also included Figure 1-18, which is photograph of the physical

components that make up the demonstration circuit.

................

.................
ooooooooooooooooo

................
................
................

ETHERNET

fritzing

Demonstration circuit Fritzing diagram.

Actual demonstration circuit.

The last three figures were all provided to clearly show how to set up a RasPi project.

Later book projects may have a schematic, a Fritzing diagram, and/or a photograph

depending on project complexity.

Next is a detailed discussion of the software required to enable the demonstration
hardware.

Demonstration Software Setup

The wiringPi application requires the use of C language programs to control the GPIO
pins. The demonstration program is a classic version of the “Hello World” program,
which blinks a LED once per second. The following program listing should be input into

a file named blink.c using the nano editor:

#include <wiringPi.h>

int main (void)

{
wiringPiSetup ();
pinMode (0, OUTPUT);
for (::

|
digitalWrite (0, HIGH);
delay(500);
digitalWrite (0, LOW);
delay (500);

}

return 0 ;

You can start the nano editor by entering the following command in a terminal window:

sudo nano blink.c

Enter all the code as shown in the listing, and press CTRL-O to save the code in a file

named blink.c. You will next need to press CTRL-X to exit the nano editor.

The code in the blink.c file now needs to be compiled and linked to form an executable

application. Enter the following to compile and link the program:
gcc -Wall -o blink blink.c -lwiringPi

The gcc portion of the command invokes the Gnu C/C++ compiler and linker

application, which was downloaded as part of the original OS image. The executable is
named blink because that name immediately follows the -o option. And finally, the
wiringPi library is linked with the compiled source code by the -1wiringPi option.
The completely compiled and linked executable is named blink and will be found in the

home directory if you haven’t changed it from when you ran the preceding command.
Next, enter the following command to run the program:
sudo ./blink

If all went well, you should now observe the LED blinking once per second. If you do

not see it blinking, then I recommend the following:
m Recheck the LED circuit, and confirm that the correct GPIO pin is connected.
m Recheck the LED orientation. It won’t light if it is connected in reverse.

m Confirm that the program has the correct wiringPi pin ID. The program may have
compiled and linked properly, but if the pin ID is incorrect, it cannot function as

expected.

The LED will continue to blink indefinitely because the GPIO control statements are
within a “forever” loop created by the for (; ;) statement. You will need to press CTRL-
C to stop the program and LED from blinking. The CTRL-C key combination is known as
a keyboard interrupt and is quite useful to stop a program and/or process that is

currently running on a RasPi.

The Make Utility

A handy alternative is available if you don’t like or desire to use the nano editor and gcc
application to create the test program. This alternate is the make utility, which will
automatically create an executable program using a preset script and premade source
code. The script is found in a makefile, which is simply a bundle of OS-level commands
that the make utility follows to create an executable file. To use make, you must first
change directories from the home directory to the directory that holds the example

programs in the wiringPi directory. The terminal command to make this change is
cd ~/wiringPi/examples

Then all you have to do enter these next commands to create and run the blink

program:

make blink
sudo ./blink

The LED should start blinking once per second after these commands are executed. The
blink.c file stored in the Examples directory is almost identical to the program listing

provided previously in this chapter.

There are other programs in the Examples directory that control additional LEDs, such
as blink8.c and blink12.c, which blink the first 8 and 12 GPIO pins, respectively. There
are also a series of programs that control various devices that are not used in this book

but could be explored on your own if you are so interested.

Natural Human Interaction

Natural human interaction (NHI) is the name given by Google’s Al scientists and
researchers to the new Al field of how computers can interact with humans in the same
way as humans interact with other humans. Other Al researchers have named this field
the natural user interface (NUI), but it all relates to simplify how a human can control
a computer system using only natural behaviors such as speech, hand motions, hearing,
or even having the computer recognize a facial image. Modern HA systems must
include NHI features in order to be attractive to potential nontechnical users so as to be
viable and have widespread use. I focus on speech recognition as well as computerized

auditory response as the appropriate technologies to use in this book.

Google, in cooperation with the MagPi magazine publisher, has made available a
project kit that allows makers to experiment with NHI. This inexpensive kit is named
the Google AIY Voice Kit for the Raspberry Pi, for which I have provided a source in
this chapter’s Parts List.

A comprehensive booklet included with the kit that describes in detail how to set up
both the physical device and the software required to operate it. You will also need to
download a complete AIY Voice image in a manner similar to the procedure described
previously. This image is available from the following link:
https://aiyprojects.withgoogle.com/voice-assembly-guide-1-get-the-voice-kit-sd-
image. The kit build is very easy, requiring no tools other than a 0o Phillips head
screwdriver. Figure 1-19 shows the completed kit with a RasPi 3 already set up inside

the cardboard box enclosure.

Google ATY Voice Kit for the Raspberry Pi.

The kit has only four electronic components, which are depicted in the block diagram in
Figure 1-20. I will first explain how the HAT module, microphone array, and
LED/pushbutton components function before detailing how to install the RasPi

software that will enable the voice kit itself.

Microphone Array

HAT Module

Push Button

LED Combination Speaker

Google ATY VOICE KIT block diagram.

HAT Module

The Hardware Attached on Top (HAT) module is the key component in the voice kit. It
contains all the interface and sensor processing capabilities that provide for both
speech recognition and audio output. It also contains some additional features that will
enable you to control some additional external devices via some RasPi GPIO pins. The
HAT module is based on a recent Raspberry Pi Foundation standard that specifies how
third-party manufacturers may design daughter boards that plug into a RasPi GPIO

header to provide extended capabilities. The HAT standard provides for both physical
dimensions and embedded software interface specifications. The typical way the
embedded software interface is implemented is through the use of a serial electrically
erasable programmable read-only memory (EEPROM) chip. The voice HAT module
uses a 4-kB serial EEPROM that can be accessed by the connected RasPi to provide it
with all the necessary board configuration parameters required for the voice interface
application. All the power normally required for the voice HAT module is provided by
the GPIO header power pins. This HAT module does have a provision to connect an
external power source in case there is a requirement to power connected devices that
require power in excess of what can be supplied through the header pins. There is no
additional general-purpose memory on the board because that is provided by the

connected RasPi. Figure 1-21 shows the voice HAT module.

Voice HAT module.

Six servo connections are also provided on the HAT module. These connections allow
you to directly control low-voltage devices such as servo motors using six associated

RasPi GPIO pins. The module’s servo connections are shown in Figure 1-22.

Servo connections.

These connections are printed-circuit board (PCB) solder pads to which you can easily
solder three-pin headers to allow easily connection of standard hobby-grade servo
motors and other similar devices. Table 1-1 details how the RasPi GPIO pins correspond
to the voice HAT servo connections. You should note there is a series 220-Q resistor

connected that acts as a current limiter for the connected GPIO pin.

TABLE 1-1 Voice HAT Servo to RasPi GPIO Pin Connections

Servo Pin RasPi Physical | RasPi BCM Pin
Number Pin Number Number

0 E74 26

1 31 6

2 a3 13

5 29 5

4 32 12

5 18 24

In addition, there are four sets of driver connections provided on the HAT board. These
connections are shown in Figure 1-23. They are labeled “Driver 0” through “Driver 3”

and are similar to the servo connections except that the RasPi GPIO pins directly

control a field-effect transistor (FET), which, in turn, controls the current flow to the
PCB solder pads shown in the figure. This configuration will allow for up to 0.5 A to be
supplied, far in excess of what is available through a normal RasPi GPIO pin. Figure 1-
24 shows the schematic for one driver channel. Notice in the schematic that each driver
channel has a 500-mA poly fuse in series with the FET drain to prevent an overload and
subsequent permanent damage to the driver circuit. The poly fuse is resettable,
meaning that it will start conducting again after cooling down when subjected to a

transient overload condition.

2

L
&

B

Ooid

o

Driver connections.

\

Poly Fuse
500 mA \\
=
= 2L DriverOto 3
A 3
.._
D
—\ QO0to3
GPIOXX 6 J':) FET DMG3420U
R7to 10 2
10k Ohms
R

Driver circuit schematic.

Table 1-2 details the connections between the RasPi GPIO pins and the driver channels.

TABLE 1-2 Voice HAT Driver Channel to RasPi GPIO Pin Connections

Driver
Channel RasPi Physical | RasPi BCM Pin
Number Pin Number Number
0 7/ 4
1 11 17
2 13 27
3 15 22

The question that might naturally arise for you is when should you use a driver channel.
The answer would be that you use one to handle any relatively high current load that is

beyond the normal RasPi GPIO current limit of approximately 20 mA. Such loads

might consist of relay coils, which are often used in HA projects. The relays themselves
then could handle much heavier currents, including mains voltage and current, for such

things as appliances and lighting fixtures.

There a few more items on the HAT board, which I have lumped together in this next
brief discussion. A digital-to-analog converter (DAC) combined with a class D audio
amplifier takes the converted analog audio stream coming from the RasPi I2S interface
and sends it to a 4-inch loudspeaker. I can readily attest that the speaker is quite loud
and remarkably clear. Next is a power supply that can take an external input from a
barrel connector (not supplied with the kit) and generate a regulated 5-V power source
for both the servo and driver outputs. Use of this supply is absolutely required if you
want to power servos and/or driver channel devices. The organic RasPi power supplied
through the GPIO pins is not capable of meeting the heavy current demands, and you
will most likely cause permanent damage to the RasPi if you attempt to operate in such

a fashion.

Table 1-3 is a compilation of bit-serial communication interface pins that are available
using PCB pads and a five-pin header located on the HAT module. The interfaces

consist of

TABLE 1-3 Bit-Serial Communication Interface Pin Connections

Pad | Bit-Serial | Pin/Pad
Label | Interface | Label | Remarks
JI3 SPI 5V —
JI3 SPI 33V | —
JI3 SPI GND |—
JI3 SPI CE] Chip enable 1
JI3 SPI CEO Chip enable 0
JI3 SPI MISO | Master in, slave out
JI3 SPI MOSI | Master out, slave in
JI3 SPI CLK Clock
JIS 12C SDA | Serial data
JIS 12C SCL Serial clock
JI5 12C GND |—
JIS 12C 33V |—
JIS 12C 5V —
JP2 UART TXD | Transmit out
JP3 UART RXD Receivein

m Serial peripheral interface (SPI)

m Interintegrated circuit (I12C)

m Universal asynchronous receiver transmitter (UART)

These pins can be useful for connecting additional modules or devices to use with the
HAT, as well as an easy access point for the bit-serial signals that otherwise would be

unavailable because the HAT mode covers the entire RasPi GPIO header. These pins

are clearly silk-screened on the HAT and can be seen in Figure 1-25.

ooooobom

Voice HAT bit-serial communication interface pads and pins.

Microphone Array Module

The voice kit employs a dual microphone array to sense and send digitized user voice
messages to the RasPi. The digitized signals are in the 12S Bit-Serial Protocol, which is
the same protocol used to send digital announcements to the DAC-amplifier
combination. Figure 1-26 shows the microphone array, in which you can clearly see the

digital microphones located at each end of the slender PCB module.

Voice HAT Microphone
Made by you with Google

Dual microphone array.

Each microphone is a Knowles MEMS unit, Model SPH0o645LM4H. An uncased

microphone is shown in Figure 1-27 alongside a block diagram for the unit.

— VDD DOUT —
— CLK
=1 LR GND —

Knowles digital microphone.

Any incoming sound wave will be converted from its analog form to an equivalent
digital data stream by the microphone unit using the 12S Bit-Serial Protocol, with the
data subsequently sent over to the RasPi. Each microphone can be selectively enabled
depending on whether or not a solder bridge (JP1, JP2) is in place. The default

configuration is to have both microphones enabled.

Pushbutton-LED Combination

There is also a relatively large pushbutton-LED combination device, as shown in Figure
1-28. The purpose of this device is to activate the RasPi/HAT system to begin
recognizing a user’s voice and to light a LED to provide feedback to the user that the
system is enabled. The button’s digital signal is connected to GPIO physical pin 16
(BCM #23), and the LED is connected to GPIO physical pin 22 (BCM #25).

Pushbutton-LED combination.

GOOGLE VOICE ASSISTANT SOFTWARE INSTALLATION

This section discusses in detail the key steps involved in the installation of the Google
Voice Assistant software. Step-by-step instructions are also provided in the instruction
pamphlet included with the Google Voice Kit. The instructions included in this section
presume that you already have downloaded and created a micro SD card from the ATY
Voice image mentioned earlier. This image contains several Python script directories,
which allow the RasPi to connect with the Google server and implement both voice-
recognition and speech-generation functions. These steps should be accomplished

using the RasPi’s Web browser.

Create a Google Account

The very first action you must take is to create a Google account. I am pretty sure that
most of my readers already have a Google account, but if you don’t, just go to
https://accounts.google.com/signup. This is a very simple action, but it is absolutely

required before proceeding to the next step.

Log into the Google Cloud

The next step is to log into the Google cloud (GC) website with your Google account
user name and password. Normally, your regular email account name is the user name,
and whatever you set for your Google account password is the same for the cloud login.

The GC login link is https://console.cloud.google.com.

Create a Google Cloud Project

You will need to create a Google cloud project (GCP) in order to continue with the
project. Just click on the GCP icon in the upper left-hand corner of the cloud console
webpage. Figure 1-29 shows the result of this action. You will see that I already created
a project (as shown in the figure). Yours will be blank when you first open it. Click on
the + icon to open the dialog to name your project. I suggest naming the project Voice

Assistant, just as I did in the figure.

New GCP dialog screen.

Enable the Google Assistant API

Click on the triple-bar icon in the upper left-hand corner of the GCP menu bar, and
then click on the Library selection from the drop-down menu. Then enter “Google
Assistant API” into the search text box. Next, click the Enable icon to include the
Google Assistant API in your project.

The Google Assistant API uses the gRPC framework to implement the Voice Assistant
functions between the Python client, which is stored on the RasPi, and the Google
server software, which is located at a remote Google data service center. I have included
a sidebar, “Google Remote Procedure Call,” that delves into the gRPC framework to

further expand your knowledge regarding this important technology.

Obtain Credentials

Security should always be a consideration in any computer project, especially ones that
use the Web. This Voice Assistant project is vulnerable to being hacked, which is why
there is strong security built into this Web application. This security is implemented
using OAuth 2.0 authentication on both the client and the server. OAuth 2.0 is a token-

based authentication sequence. It is implemented in a process clearly shown in Figure

request/respond to each other in creating a secure link.

. Client App Google
wamata, |- '
.

o -
=

Access App

<
Login via Google

Login to Client App via
Google

»

Redirect to Client App,
include authentication
code

Feteas e E R » |Send authentication code,

client id, client secret >

e
Return access token

<)
User logged in

OAuth 2.0 data-sequence flow diagram.

You will need to create an OAuth 2.0 client by first clicking on APIs & Services on the
cloud console screen. Then select Credentials, and click on Create Credentials when the
Credentials screen appears. You will first need to configure your consent by clicking on
the Configure consent screen. Choose an appropriate product name, and then click

Save. I recommend the name Voice Assistant.

Google Remote Procedure Call

gRPC is an abbreviation for “Google Remote Procedure Call,” where a client
application can directly call methods on a remote machine as if it were a local
object. This design helps you to easily build distributed applications and
services. The gRPC framework defines what services are available, how to
request those services, and finally, how to deal with the returned objects. The
server side is responsible for implementing the entire interface and properly

handling all client calls. The client side, which is the RasPi in our case,
contains a stub that mirrors the same exact methods that are implemented
on the server side. The gRPC is set up to handle a variety of languages.
Python was chosen to be the language used for the client-side
implementation for the Voice Assistant. | am not sure what language the
Google server side uses, but | suspect that it likely is C/C++ for efficiency.

Data streams are exchanged between the client and server using protocol
buffers. This is an open-source implementation where the serial data to be
exchanged are set up in a PROTO file, which is a text file that uses a .proto
extension. The protocol-buffered data are structured as messages, where
each message is a record containing name/value pairs. These pairs are also
called fields. The following is a simple record example:

message Person {
string name = 1;
sipn=siZ al@El = Far
bool has auth = 3;

A buffer protocol compiler is used once all the data structures have been
defined. The compiler will generate appropriate language-specific classes
from the PROTO definitions. In addition, unique accessor methods will be
created for each of the mutable variables. Methods are also provided that will
serialize and parse the raw data bytes to language-appropriate objects.

gRPC services are defined in PROTO files with RPC parameters and return
types specified in accordance with protocol buffer messages. The following is
an example of a service definition:

// The greetings service definition
service GreetingService {
// Define a RPC operation
rpc greeting(HelloRequest) returns(HelloReply);

// The request message has the payload; user’s name
message HelloRequest {
string name = 1;

// The response message containing the greetings
message HelloReply {
string message = 1;

There have been several revisions to the protocol buffer, with the latest being
proto3, which | believe is used with gRPC. The latest documentation for
gRPC protocol buffers is available from
https://developers.google.com/protocol-buffers/docs/reference/overview.

Next, you need to name your newly created credential. Go back to the Credentials
screen, and click on the Create Credentials button. Select OAuth client ID from the
drop-down menu. Click on the radio button “Other” for the application type. Enter a
name in the textbox that pops up. I suggest using the name Voice Recognizer, which fits
the intended application. Click on the Create button. The program will briefly pause
while the client ID and client secret are both generated. Figure 1-31 shows a sample

screen shot of a client id and client secret.

OAuth client

Here is your client ID

219895466394~ Teu19buv4Sk1f4]2galg41 Thbvbilbkh apps. googleusercontent. co |r:|

Here is your client secret

mv=3b1EXezipkuSyTgridudk O

OK

Client ID and client secret.

Don’t worry about copying the obscure data, they will be automatically sent at the

appropriate time according to the sequence diagram I presented earlier.

Download and Rename Credentials

You will need the new credentials to be stored in a local RasPi file. Select the Voice
Recognizer credential shown on the Credentials screen. Then click on the Download
JSON icon, as shown in Figure 1-32. This action will download a JSON file containing
both the client ID and client secret to a file in your Downloads directory. The default file
name is very complex, with many numbers and letters. You will need to rename it to
make it practical to access. To do this, open a terminal window and enter the following

commands:

= Google Cloud Platform &s Voice Assistant ~

API Credentials

Credentials ‘OAuth consent screen Domain verification

<

ur

Lk "
Create credentlals ~ Delete

O

Create credentials to access your enabled APls. Refer to the AP| documentation for details

QAuth 2.0 client IDs

Name Creation date v Type Client ID

Voice Recognizer Apr 22, 2018 Other 2195 | © ¢ s qoogleusercontent.com Vs i@

Download JSON

Download credentials screenshot.

cd Downloads
1s
mv client secret

Now press the TAB key, which will automatically fill in the rest of the download file’s
letters and numbers. Append the following to the command you are building in the

terminal window:
/home/pi/assistant.json

Now press the ENTER key, and you will have a new JSON file named assistant.json

in the home directory, which is required for the following steps.

Activity Controls

Activity controls add functionality to your Google account. In this case, you will be
enabling the Google Voice & Audio Activity control for your account. By doing so, you

will be enabling your account to

m Learn the sound of your voice

m Learn how you say words and phrases

m Recognize when you say “OK Google”

m Improve speech recognition across Google products that use your voice

Google saves your voice recordings and other audio present when you activate the
control by saying “OK Google.” Activation also can be initiated by pressing a
pushbutton if the system is so designed with such a device. The voice kit uses the

pushbutton approach to activate voice recordings.

Go to the following link to activate the Voice & Audio Activity control:
https://myaccount.google.com/activitycontrols/audio. Enable the activity by clicking
on the slider shown in Figure 1-33.

Google

< Activity controls

Voice & Audio Activity

Turn onl/off

Help recognize your voice and improve speech recognition by storing your voice and
audio inputs to your account (for exarmnple, when you say "Ok Google® to do a voice
search). Learn more

MANAGE ACTIVITY

Enabling the Voice & Audio Activity control.

Note that voice inputs cannot be saved if the Voice & Audio Activity control is turned

off, even if you are signed into your Google account.

Testing the Voice Kit

You are now ready to test the voice, provided that you have completed all the previous

steps. Enter the following commands in a terminal window to start the voice kit test:

cd AIY-voice-kit-python
src/examples/voice/assistant grpc demo.py

Next, press the large pushbutton, which should start glowing green. Then clearly speak
your voice command. My first command was “What time is it?” The voice kit clearly
and loudly responded with the local time. You should try out a bunch of different
commands to see how Google responds. Enter the CTRL-C key combination to stop the
program. Figure 1-34 shows the terminal window log of how the system responds to

parsing the voice command.

Edit Tabs Help

pherrypi:

Terminal window log for a voice command.

The following is the program listing for the demonstration Python program. I have
included it here to illustrate how relatively simple it is to implement voice recognition
and speech output using Google’s client/server approach. This listing will also be used
for some simple modifications that will be discussed in the next section.

#!/usr/bin/env python3

Copyright 2017 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or
implied.

See the License for the specific language governing permissions and
limitations under the License.

il

A demo of the Google Assistant GRPC recognizer."""
impeort logging
import aiy.assistant.grpc
import aiy.audio
import aiy.voicehat
logging.basicConfig(
level=logging. INFO,
fermat="[%(asctime)s] %(levelname)s:%(name)s:%(message)s”
)
def main():
status_ui = aiy.voicehat.get_status_ui()
status ui.status('starting’)
assistant = aiy.assistant.grpc.get_assistant()
button = aiy.voicehat.get button()
with aiy.audio.get_recorder():
while True:
status ui.status('ready')
print('Press the button and speak')
button.wait for press()
status_ui.status('listening’)

print('Listening...")
text, audioc = assistant.recognize()
if text:

if text == 'goodbye':

status_ui.status('stopping’)
print('Bye!')
break

print('You said
if audio:

ety AUy

aiy.audio.play_ audio(audio)
if _ _name__ == '__main__ ':

main()

EXTENDING THE VOICE KIT FUNCTIONALITY

This section shows you how to increase the voice kit functions using a modification to
the demonstration program previously listed. The first thing you should do is to create
a copy of the original program, on which any modifications will be applied. This action
ensures that an unmodified program listing is preserved so that you can always restore
the original program functions. Always make modifications to the copy, never to the

original. Enter the following commands in a terminal window to make the first program

copy:

cd =

cd AIY-voice-kit-python/src/examples/voice
cp assistant_grpc_demo.py demol.py

sudo nano demol.py

Note that I used demoN.py as the copy name, where N starts at 1 and progresses in a
sequence. You should also make a list of the demoN.py names and what modifications
have been done to them. It is very easy to get lost in program modifications without

careful attention to what changes have been made to what programs.

This program modification will be to turn off the RasPi by using the voice command
“Power down.” Use the nano editor to insert the following additional code, which is in

bold text, as shown in the listing:

"""A demo of the Google Assistant GRPC recognizer.

moae mn

import logging

import aiy.assistant.grpc

import aiy.audio

import aiy.voicehat

import subprocess

logging.basicConfig (

def

level=logging.INFO,

format="[%(asctime)s] %(levelname)s:%(name)s:%(message)s”
shutit():

subprocess.call('sudo shutdown now', shell=True)

def main():

if name == '_ main ':

status ui = aiy.voicehat.get status ui()
status ui.status('starting')
asslstant = aly.assistant.grpc.get_assistant()
button = aiy.voicehat.get button()
with aiy.audio.get recorder():
while True:
status_ui.status('ready')
print('Press the button and speak’)
button.wait for press()
status_ui.status('listening’)

print{’'Listening..."’)

text, audio = assistant.recognize()
if text:
if text == 'goodbye':
status_ui.status(’'stopping’)
print('Bye!"')
break
if text == 'power down':
aiy.audio.say('Shutting Down!')
shutit ()
print('You said "', text, '"'")

if audio:
aiy.audio.play audio(audio)

main()

I made the code modifications and entered the following commands to test the

program:

&d =
cd AIY-voice-kit-python
src/examples/voice/demol.py

I observed that the RasPI did shut down shortly after I voiced the command “Power
down.” This program modification should clearly show that it is relatively easy to
extend the RasPi voice interface functions. I will also demonstrate in some of the
following chapters how to directly control GPIO pins using voice commands. This

feature will be very important in implementing a variety of HA functions.

SUMMARY

This chapter started with a brief discussion regarding several HA design approaches.
These included using a natural human interaction (NHI) function such as voice

activation.

The next sections concerned how to set up a Raspberry Pi (RasPi) as an HA

microcontroller. Topics included

m Creating an OS disk image on to a micro SD card
m Raspbian configuration

m Updating and upgrading the OS

I next presented a comprehensive discussion on the general purpose input/output
(GPIO) system. GPIO pins are a very important design feature that provides a means
for the RasPi to control HA interfaces. I also demonstrated a simple LED blink
program, which used the wiringPi library for GPIO pin control.

Several sections followed concerning how to build and program the Google AIY Voice
Kit. This kit was used to demonstrate a voice-recognition capability using a RasPi. I
explained how each principal kit component worked, including the Hardware Attached
on Top (HAT) module.

A detailed account of how to set up a Google developer’s account followed. This account
is necessary to access the Google cloud platform, which services the voice kit for both

voice recognition and speech output.

The chapter concluded with a demonstration of how to modify the default voice kit
program such that the RasPi shuts down on recognizing the voice command “Power

down.”

Interfacing a Google Home Device with a Raspberry
Pi
THIS CHAPTER INCLUDES a detailed discussion of how Google’s Home device works
and how it interacts with Google’s Web servers to provide intelligent home-based voice
services. The overall Google service is called Google Assistant and is also the same
service described in Chapter 1 for the Google Voice Kit. This chapter also has a
comprehensive discussion of how to connect a RasPi to a Home device to take
advantage of the professional voice-recognition and speech-generation functions. This
approach is significantly different from the one taken in Chapter 1, where a Google
Voice Kit was connected to a RasPi to enable fairly basic voice recognition and speech
generation. That approach required the RasPi to perform many functions that are done
solely within the Home device. This chapter’s approach is to have the Home device
function more as a coprocessor than as a RasPi peripheral. This means that the Home
device offloads a substantial amount of the computational burden from the RasPi,
which, in turn, permits the RasPi to have more computational assets available to

efficiently perform other system functions.

GOOGLE HOME DEVICE

It is important to have a detailed discussion regarding the Google Home device before
delving into how it functions with a RasPi. Figure 2-1 shows the device, which is self-

contained and connects to the Internet through a local WiFi link.

Google Home device.

Parts List

Item Model Quantity | Source

RasPi 3 B or B+ 1 adafruit.com
amazon.com
mcmelectronics.com

Google Home device Home 1 amazon.com

Power Switch Tail Il 1 amazon.com

Qiachip 433-megahertz (MHz) transmitter/ — 1 amazon.com

receiver, four-channel

Alternating-current (AC) table lamp Commodity 1 Various

Some key technical specifications are as follows:

m Dimensions: 3.79 inches (96.4 millimeters [mm]) in diameter by 5.62 inches (142.8
mm) high

m Weight: 1.05 pounds (477 grams [g])
m Colors: White with slate fabric base (standard); other colors available

m Supported audio formats: HE-AAC, LC-AAC, MP3, Vorbis, WAV (LPCM), Opus, and
FLAC (hi-res 24 bits, 96 kilohertz [kHz])

m Wireless communications: 802.11b/g/n/ac (2.4 GHz/5 GHz) WiFi, Bluetooth 4.1,
and Near-Field Communication (NFC)

m Speakers: 2-inch active driver with dual 2-inch passive radiators

m Far-field voice recognition

m Power supply: 16.5-V, 2-A wall adapter

m Ports and connectors: Direct-current (DC) power jack

m Supported operating systems: Android (4.4 and higher) and iOS (9.1 and higher)

Please note that only the WiFi communication link is enabled in the default Google
Home configuration. The internal communications module shown as part of the Figure

2-2 block diagram is capable of supporting Bluetooth and NFC as well as the default

WiFi protocol.
ir,"' ‘\\ Capacitive Drivers
[N 256MB | [512M8B
T] o] Flash RAM
\ M
\ /
\ﬂ-..____._‘ Bluetooth /\/
Capacitive Grid LED Drivers :.22
o%o]
o] [0 B —
[&] (8] . L]
o o L L]
Op O —
LED Array |
Auto Interface Auxiliary Processor _h DAC
5V 33V |
I | Audio
MEMS Microphone Array Power Supply Amp

J_ é‘ 4 Ohm Speaker

AC Mains

Google Home block diagram.

Alot of hardware is contained in the device, which makes it very user friendly,
including a touch interface, LED displays, and the voice interface. The top of the device
contains a grid of capacitive pads, which can sense a user’s finger touch and react
appropriately. The top also has an embedded multicolored 12-LED ring array, which
provides some visual feedback to the user. Finally, a two-element micro-electro-
mechanical systems (MEMS) microphone array is mounted on the top surface, which
senses the user’s voice. If you carefully examine Figure 2-1, you can see the two tiny
holes for the microphones. It is very important to keep these holes clear of any blocking

material or you will degrade or even stop the device from functioning properly.

This device consumes a fair amount of power, which may be inferred from the 16.5-V,
2-A power supply. This suggests that it would be impractical to consider using this
device in a portable, battery-powered project. The power consumption is not an
important limitation because the device will likely be used in a static configuration in

the user’s home while constantly being plugged into the AC mains.

The device uses two microprocessors, one of which I labeled the “auxiliary processor” in
Figure 2-2, which controls and processes the user’s interactions. The other
microprocessor, which I labeled the “main processor” in Figure 2-2 communicates with
the Google Assistant service, processes audio streams, and does several other related
functions. The main processor has a 256-megabyte (MB) Flash memory, which will
automatically be updated to the latest version during your initial setup. It also has 512

MB of RAM, which holds the dynamic data required to support real-time operations.

The device uses a 2-inch active 4-Q speaker along with two 2-inch passive radiators to
produce high-quality audio. It can potentially generate such a high volume that you will

want to turn it down so that it will not create too much of a disturbance.

Configuring the Google Home Device

The device must be configured initially using a smartphone app. You must first load the
app named Google Home either on an Apple (i0OS) or Android smartphone or
equivalent tablet device. Then follow the on-screen instructions to enable the device. I
used the i0S version without any problems and promptly got the device up and running
correctly. I am refraining from including any instructions regarding how to configure
the device because the step-by-step procedures displayed on the smartphone or tablet

are abundantly clear.

I would strongly suggest that you take some time to learn how to use the device in a
stand-alone fashion. I believe that you will be impressed with its inherent capabilities
and functionalities. The more you understand how to successfully use the device, the

easier it will be for you to understand how to use it with a RasPi.

CONNECTING A RASPI TO THE GOOGLE HOME DEVICE

The first thing you must realize is that no direct physical connection can be easily made
between a Home device and a RasPi. Instead, a logical connection between the two
must be made using the Cloud. In this way, the Home device connects with a Web-
based server that in turn connects with another Web service that sends commands to
yet another Web server hosted on the RasPi. It turns out that there are a number of
approaches to implementing the logical connection. I have taken an approach using
software and protocols that are relatively uncomplicated and easy to use and with
which I was already familiar. I will create a very simple demonstration project to show
you how this all works in a step-by-step manner. The project will be to remotely control
a single LED connected to a GPIO pin on the RasPi. The LED will be turned on by the
phrase “OK Google, turn on the LED” and turned off by the phrase “OK Google, turn off
the LED.”

The first element of the project concerns how the Home device initiates a Web request

that is eventually sent to the RasPi’s Web server.

ifttt.com

This section’s heading is the URL for the Web service that enables a Google Home
device to send a Web request to a RasPi-hosted Web server. The URL name is short for
“if this then that,” which is a phrase that can be traced back to a fundamental
propositional logic principle called modus ponens, which is a Latin phrase meaning
“mode that affirms by affirming.” This principle may be summarized by this logical

rule:
Pimplies Q and P are both asserted to be true, so therefore Q must be true.

The IFTTT website allows you to create an applet, which is activated by a predefined
trigger action sensed by a Home device. The applet will then use a Web service to
connect with the target RasPi, which must also be connected to the Internet. You must
first register on the IFTTT website in order to create an applet. It is a simple six-step

process to create an applet once you have registered and created a free account.

Figure 2-3 shows the initial screen to create an applet. You make this screen appear by

clicking on the My Applets icon shown on the main IFTTT introductory screen.

.0 e "‘ Migiog a0 Appiet - ETTT l:.".':._" e

“ @ Secure | hitpsfifttLoomicreate T BB m L I
U Ape e Bostmacks [Use Google Asdata.. [Besotary BUVEN S [3 Juteer | Documact. % Proca O for Rassb [3 00 Prote Pl guide -

IFTTT < Discover O Search (B Myapplets B Activity @ dnorris011 v

New Applet

if Bthis then that

Want to build your own service T Build on the platferm 2

Abaut Blog Help Jobs Terms Privacy Trust

Add your serdos and become a partner

(= IFTTT e)

Initial screen for applet creation at ifttt.com.

Next, click on the “this” word in the predominant phrase “if +this then that” shown on
the screen. The screen shown in Figure 2-4 will next appear. This screen allows you to
select a Web service that will successfully interface with the Google Home device.
Entering a “G” in the search text box causes all the available Web services with names
starting with a G to appear. You will need to click on the Google Assistant icon to select
the required Web service. This is precisely the same Web service that enabled the
Google Voice Kit to function in the Chapter 1 demonstration. This action completes the

first step in the applet creation process.

B 00 R vk o Aocet - ETTT " 0
& O | § Seowe | https Sttt com'createfiTside 0 o B EF! § :
IE Apos i Bockmarics B Une Googhe Assita.. B Raapbenry PUVPH S [ko | Document. B Prota OF for Raapb. [107 Prots Pl guice

IFTTT © Discover () Search [E Mydpplets B Activity

£ Back

Choose a service

19 A

- [t]

i - : GE Appliances :
Ggi':fﬂ:::::’ Google Assistant = c:ﬂ;;?“ Google Drive

e (Yy

GE Appliances
Refrigerator

Google Photos Google Docs

.

Choose a Service selection screen.

The second step is to choose a trigger action for the applet. I chose “Say a simple
phrase” as the triggering action. You can select this trigger action by clicking on the
appropriate block, as shown in Figure 2-5, which automatically appears after

completing the first step.

B 0D o w Aot - FTTT o e
= O | @ Secwre | Moo ML oomsreate/-poogis_bisitas T oid e & B Be
i Apps o Bockmarics TN Une Qoogie Assivis (B Raapberry PIVPH S [Jemper | Dotumenn % ProanOF for Raspt. [104 Proas M guide [T] Google ome = Co. O Signin = Googe Ac.

IFTTYT & UCscover O Search [H MyApplets = Activity @ dnorriso11 v

. Choose trigger

Say a simple phrase Say a phrase with a Say a phrase with a text
number ingredient

£ Back

Say a phrase with both
a number and a text
ingredient

Choose Trigger screen.

Clicking on the trigger block causes the screen shown in Figure 2-6 to appear. You need
to fill in the required fields both to request and response phrases. I chose two very
simple and direct phrases, as you can readily see from the figure. Click on Create

Trigger to generate the trigger action and to proceed to the next step.

8O0 I v s Apgier « IFTTT M e
W= Cf | Soturn | M ETLOmEreate i - Ly -3- il phrate Tide o B Be:
A Amss e Bedeerics B0y Qocoy Assivs. [Rascberry FEVPM S [Jeigew | Documeet.. R Proes OF for Runph.

Dy B oo bt R B2 b Penltry

Complete trigger fields
What do you want to say?
Turrn on the LED

What's another way to say it? (optional)

And another way? (opticnal)

What do you want the Assistant to say in
response?

Language

English

Create trigger

Complete Trigger Fields screen.

You should now see the phrase “if <<icon for selected web service>> then +that”
appear, as shown in Figure 2-7. Click on the “that” word to make the screen that allows

you to select the Web service used to connect with the RasPi.

858 /Wummnsen-FTT x a8

i= C | 0 Sotorn | Batpd Bt eomisreatn - tiy-0-1iegle-phva e -thanTaided DD ¢
i Apps o Bschowarcs O Ude Qoo Aashis. [Redpberey PVPMIS. [Mg | Desomenn. I Pooas OF for Rusps [Y 900 Procs B gice [Oosgie Home - Co. G S e - Qosgle Az

IETTT < Discover O Search [E MyApplets = Activity ® dnoris011 v

< Back

if B then Bthat

About Blog Halp Jobs Terms Privacy Trust

Audd your serate and Become & panner

B IFTTT rtasteem

Screen to proceed to action selection.

Figure 2-8 shows the screen for Choose Action Service that appears, which will allow
you to select the appropriate Web action to be taken after the trigger action has
completed. Enter “Web” in the search text box, which causes all the available Web
services with names starting with Web to appear. In this case, only one service named
Webhooks will appear. Click on the Webhooks icon, as shown in the figure, to select it.
Webhooks is the current name for a Web service previously known as Maker. Figure 2-
9 shows the next screen, which is used to start the Web request configuration process.
Click on the Make a Web Request box to proceed.

808 ‘Wuswmson-r k0 =3
&« C | 0 Sesw | Mups EELOsmMreate - 1iy- 8- 1imade-phrase-thanTaided # DOBRe
i Apps o Bscloweia O U Qooge Assbins B Redpbersy PEVPM S [N Jedosw | Denomenr. 0 Deons OF foe Baaps. [00 Procs Migraise [I] Dongls bewms - Co. G Sipn - Gosglede

IETTT < Discover O Search (3 MyApplets 5 Activity ® dnomisoil v

< Back

Choose action service

Swp 3ol

Q web

&S

Webhooks

Choose Action Service screen.

B 08 [v an accset - BTTT %W (=]

'S ® | @ Secure | htips/ifttLoom/create . soy-a-wimplephias_ 7 B O m 9 ;
B! appr v Boskmacis Gl Use Googhe Artnca. [Baspbbry PIVEM B) Jatper | Docament. =

Choose action

< Back

Make a web requaest

Make a Web Request screen.

Clicking on the Web Request block causes the screen shown in Figure 2-10 to appear.
You will first need to fill in the required field for the URL. This URL field raises the
interesting question on how to make your RasPi Web server available on the Internet.
You probably already realize that the RasPi connects to your home WiFi network using
a local IP address. In my case, this was 192.168.1.31. You can easily determine this
address by entering the i fconfig command in a terminal window. Figure 2-11 shows

the result for my situation.

B0 v s Appet - IFTTT

= C | & Sewre | BatgaErLoom e a1 | & me
i oAzes o Bsokewics D UMe ooty A (B Respbery VPN S O o | Donament

Complete action fields

URL

| hitp:iimytestsite.org -

Surrosnd sy et with *<<x2*
15 g1ape Lhe conteet

s
- i fidd Ingredient

Complete Action Fields screen.

File Edit Tabs Help
pi@raspberrypi:

etho

pi@raspberrypi:

Screen results for i fconfig.

However, the local IP address is not the correct one to enter into the URL text box
needed for the applet. You will need your external IP address, which is automatically
assigned by your Internet service provider (ISP). You can easily find this by opening a
browser on the RasPi and going to the myip.com website. Figure 2-12 shows the result
of my search on this website. This is the IP address that must be entered into the applet
URL text box, provided that you are not using a DynDNS type of service, as described
below.

Your IP address is:

) 216.246.140.148

Host:

d-216-246-140-148.cpe.metrocast.net

Remote Port:

ﬁ 20199

ISP:

m Atlantic Broadband

Myip.com screen results.

You should be aware that there is no guarantee that the external IP address will remain
the same because it is dynamically assigned by the ISP each time you connect to your
ISP server. This means that you must either edit the appropriate applet(s) each time
you run the project or subscribe to a service that provides a constant Web location. The
latter approach is the way I chose to handle this issue. I subscribe to the DynDNS
service, which provides a URL of my choosing so that all I need to do is type that into
the URL text box. This DynDNS-managed URL is constantly updated with my latest
ISP-assigned external IP address, automating the entire connection process. You can
create any URL you desire that is not already in use, consistent with normal Internet
naming practices. If you examine Figure 2-10, you should see that the URL I entered is

http://mytestsite.org (this is not my true URL because I chose to alter it for safety and

security purposes). In any case, you need to either enter your currently assigned

numeric external IP address or your DynDNS website URL as appropriate.

One further action is required to connect the RasPi on the local network to the external
world. You need to enable port forwarding for HTTP packets on your router to the
RasPi hosting the Web server. Figure 2-13 shows this port forwarding screen for my
Netgear router. Your router will likely have a different screen, but the end result will be
the same. Once in place, any external HTTP requests received by the router will

automatically be forwarded to the designated local IP address.

Port Forwarding / Port Triggering

Please select the service type.

O Port Forwarding
I Port Triggering

Service Name Server IP Address
Lii] 192 [t 1] [4Add |
Service Name External Start Port | Internal Start Port Internal IP address
1 HTTP B0 80 192.168.1.31

Port forwarding edit screen.

All that’s left in this step is to click on the Create Action button to generate the action.

Figure 2-14 shows the final screen in this six-step applet-creation process.

B 0B i a0 Appiet - FTTT o (2]

« S | 8 Secune | hepeiRLesm et sy implephesie-the. o R DD ER{ @ G
i Appn o Bockmarks [l Use Googie Assians .] Ruspberry PPN 5) Jasper | Document_

Review and finish

If You say “Turn on the LED™,
then make a web request

by dreorris0l 1

Receive notifications
when this Applet runs

About Blog Help Jobs Tarma Privacy Trust

Review and Finish screen.

Just click on the Finish button to complete the applet generation. Once you do that, a

summary screen similar to Figure 2-15 should appear.

B0 ey Tum ea e LED, 1 X &

s | @ Secune | hopsfLeomisnolety TRESAISES-Byeu-tay -t 1| BD m 8
BT An b Bosiomactn O Usé Googis Appiins [Respbery BVIN S [Jedpe | Denompen
IFTIT @ 4 @ » v

If You say "Turn on
the LED", then
make a web
request

bry . drermis011

Summary screen for the newly created applet.

You have the option to click on the Check Now button to have the applet checked for
any errors or omissions. I have never encountered an error in using this six-step
process. You should also observe that the icons for the desired Web services are shown
in the Summary screen instead of any actual text identifying those services. This applet
is now part of your My Applets collection to be found in your account on the ifttt.com
website. Please realize that you do not have to have the ifttt.com site open for this
applet to be accessed. Your Google account associated with the Home device has all the
links stored in its memory to access both IFTTT and Webhooks. Your trigger phrase
will start the process of retrieving all the needed Web links and send the desired Web
request to your RasPi Web server. The next section discusses the RasPi Web server and
requisite software necessary to respond to the Web request and carry out the desired

action(s).

RasPi Web Server Software

This section discusses the required software to process the Web requests received from

the Home device. As stated earlier, a number of methods are available to accomplish

this task. They range from installing a full-service Web server such as Apache or nginx
to using a minimal Python script. I chose the latter because it exposes the fairly simple
Web requests that can be easily handled and minimizes the computational load on the
RasPi. I will say that if a Web request required storing or retrieving any data from the
Home device, I would have chosen the full-service Web server approach. However, this

demonstration project is simply transactional, requiring no data to be sent or received.

I had two main purposes in mind for presenting this approach for implementing a Web
server on a RasPi. The first was to demonstrate a working Python script that would
control the LED as desired. The second, and perhaps more important, purpose was to
present a framework or template that could be used to implement a variety of control

schemes extending far beyond the control of a simple LED circuit.

The following Python script handles Web requests to either turn the LED on or off. I
have added some explanatory comments both in the script and following it to help

clarify what is happening in this program.

Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO
from flask import Flask

app = Flask(_ name)

This is the default method that is
invoked without an extension
Rapp.route("/", methods=['GET', 'POST'])
def index():
GPIO.setmode (GPIO.BOARD)
GPIO.setup(1l2, GPIO.OUT)
PELIE "TUEning Ethea LED o™
GPIO.output (12, GPIO.HIGH)
return "LED on"

This method is invoked when an "/off"
extension is detected
@app.route("/off", methods=['GET', 'POST'])
def off():
GPIO.setmode (GPIO.BOARD)
GPIO.setup(l2, GPIO.OUT)
print "Turning off the LED"
GPIO.output(12, GPIO.LOW)
return "LED off"

if name == " main_ ":

app.run(host='0.0.0.0"', port=80,
debug=True)

This Python script is a very simple Web server that will parse out any Web request and
run the appropriate Python code that is associated with the request. In this script, there
are two Web request formats. The first one does not have an extension or argument and

is considered the default form. This default case in the applet created in the preceding

section is simply the basic URL. The sample I provided in the applet is
http://mytestsite.org without any extensions. This Web request’s purpose is to turn on
the LED. The statement @Gapp.route ("/", methods=['GET', 'POST']) detects
this default case and allows the code immediately following it to run. The code that

follows this statement will be discussed later in this section.

The statement Gapp.route ("/off", methods=['GET', 'POST']) detects a URL
with an extension. In this case, the URL with the extension is http://mytestsite.org/off,
which is a Web request to turn the LED off. Note that I have not yet shown you how I
created an applet to turn off the LED. This is the Web server side with the Python code
following the URL parsing statement for actually turning off the LED.

The following Python code snippet turns on the LED and is worth discussing:

def index():
GPIO.setmode (GPIO.BOARD)
GPIO.setup(l2, GPIO.OUT)
print "Turning the LED on"
GPIO.output(1l2, GPIO.HIGH)
return "LED on"

This is a Python function definition that is executed when a Web request without an
extension is detected or parsed. The code uses a Python library called RPi.GPIO that
permits direct access to the RasPi GPIO pins. Recall that I used the C language to access
and manipulate the GPIO pins in Chapter 1. It is also possible to do the same in this
script, but it is much easier to simply use Python commands to directly control a GPIO
pin. The statement GPTO. setmode (GPIO.BOARD) sets up the software to use the
physical pin numbers instead of the manufacturer’s numbers (BCM mode). The next
statement, GPTO.setup (12, GPIO.OUT), sets physical pin 12 as an output. The next
print statement causes an output in the RasPi terminal window to display “Turning the
LED on,” which provides a positive feedback as to what is happening in the Web server.
The next statement, GPTO.output (12, GPIO.HIGH), sets pin 12 to a high state, with
3.3 V appearing on it. The last statement returns “LED on” and returns the string LED
onto the website originating the request. It will be ignored in the case of the Webhooks
service, but you will see this response if you connect to the RasPi Web server using a
browser in lieu of the Google Home device. Remember, the RasPi URL is freely
available on the Internet, and you may connect to it using any number of compatible

devices, including smartphones, which I demonstrate later in this chapter.

The of f () function definition is almost identical to the index () function definition
except that it places pin 12 in an off state or 0 V on the pin. This action will turn off the
LED, which is what is expected with the Web request with the off extension added to
the URL.

You will need to enter the Python script into the RasPi using a text editor. I strongly
recommend using the nano editor to do this. Enter the following command in a

terminal window to create the Editor Entry window for a file named LED_ test.py:
sudo nano LED test.py

Now enter the Python script as shown in the listing, paying attention to proper
indentation. You can alternatively download this file from this book’s website,

www.mhprofessional.com/NorrisHomeAutomation.

The program can be run in the Home directory after being entered by executing the

following command:
sudo python LED test.py

However, there is still one more software task to be done before the project is ready to
be tested: you must create an applet to turn off the LED using a voice command. This is
easily accomplished using the same six steps previously detailed for creating the applet
to turn on the LED. The only significant difference is specifying the action URL. This
one must be the same as the URL turning on the LED with the off extension appended.
Figure 2-16 shows the new action URL required to turn off the LED.

B 08 P vk s Apgien - FTTT = i a
i C | 8 et | Buge R eemicreate - say-a-smede-phase e, O B)) ER @ G
i Aspa i Bookonarcs [Ube Googie At B Rnspberry PV S [Juto | Documenn

Complete action fields

Stop Sof é

URL
' http:ifmytestsite.org/off

Add Ingrediem

1 ptape T
Mathaod

| POST

Contant Type

Complete Action Fields screen for turning off the LED.

Failing to include this new applet will simply cause the Home device to respond with
the spoken message “Sorry, can’t help with that, but I am always learning.” This would

be a great indication that you forgot to create the applet.

Of course, you must also have the LED circuit set up to view the LED being turned on
and off.

Demonstration Circuit

Figure 2-17 is a schematic for the test circuit. It is very similar to Figure 1-16 with the

exception that a different GPIO pin is used and the wiringPi library is not used.

"

Physical Pin # 12 I
BCM # 18 T L1
3300hm LED .
= J8
RasPi 3

Test circuit schematic.

Figure 2-18 is a photograph of the physical setup where you can see that I used a T-
Cobbler to extend the GPIO pins to a solderless breadboard. No additional physical

components are required for this simple demonstration.

Physical test setup.

Test Run

You will be ready to test the project once the two applets are created, the RasPi software
is installed, and the physical circuit is set up. Just execute the RasPi software as shown

previously and speak to the Home device with this phrase:
"OK Google, turn on the LED"

If everything has been set up properly, you should be rewarded with seeing the LED
turn on. You should also hear the Home device response phrase “The LED is on.” In a

similar manner, speak the following phrase to turn off the LED:
"OK Google, turn off the LED"

The LED should turn off after you after spoken the phrase and have heard the response
phrase “The LED is off.” Please note that it may take a second or two for the action to
complete after the phrase has been spoken because of normal delays in activating the
various Web services and any latent connectivity issues that might exist between your

home network and your ISP provider.

You will also want to test the project using an ordinary Web browser just to confirm
what I mentioned earlier that you can turn the LED on or off using a browser. Just
remember that there are no Web services involved with this direct action. It is basically
a good check on how well the RasPi Web server functions. I entered the turn-on URL in
a browser on a computer connected to my local network and saw that the LED turned
on. I also saw the “LED on” message appear in the browser window, as shown in Figure

2-19.

Q0@ [mytestsite.org ' o 9 | %

LED on

“LED on” message in a browser window.

In similar manner, I entered the turn-off URL in the browser and observed the LED

turn off. The “LED off” message appeared in the browser screen, as shown in Figure 2-

20.
000 < @ mytestsite orgloff ¢ ulil=l Y
LED off

“LED off” message in a browser window.

You can also use the RasPi local IP address to test the RasPi server-side software. Just
enter the IP address using a browser on another computer attached to your home
network. In my case, that would be 192.168.1.31 to turn on the LED and
192.168.1.31/0off to turn off the LED.

You can even use a browser on the same RasPi that is concurrently running the Web
server. Enter 1local host in a browser, which should turn on the LED. Enter
localhost/off to turn off the LED. Note that you likely forgot to start the Web

server if you get a message “Connection refused.”

Finally, you can also use a browser on a smartphone or a WiFi-connected tablet to
control the LED. Just enter the appropriate URL into the smartphone/tablet, and you
will be able to turn the LED on and off. The same response messages shown in Figures

2-19 and 2-20 will appear on the smartphone/tablet screen.

EXTENDING CONTROL FUNCTIONS

At this point, you may be thinking that it is great that a LED can be controlled by a

Google Home device, but how is that related to HA? The answer is simple: almost any
device that is plugged into the AC mains may be controlled using the same approach
taken by the control of a LED. The only difference lies in using different technology to
control a device supplying AC power to a given device. The next demonstration will
control a common AC-powered lamp using a RasPi GPIO pin. The only difference
between this demonstration and the preceding one is that the GPIO pin will be
connected to a special AC power control device that has a low-power control circuit

already embedded in it.

AC-Powered Lamp Demonstration

The key component in this system design is a Power Switch Tail IT power control

device. Figure 2-21 shows this device.

PaworSwiteh Tail
L A pied b Prpma Rt

Power Switch Tail I1.

This device is essentially a power cord that is controlled by a low-level digital signal that
will be directly connected to a RasPi’s GPIO pin. The Power Switch Tail II, which I will
now refer to as the PST2, uses an optically isolated digital input to control a power relay
capable of handling up to 15 A at 120 VAC. The optical isolation eliminates any safety
concerns about dealing with mains-type power with the RasPi board. The PST2 is also
ruggedly constructed and very well insulated, making it extremely safe to use in a home

environment. This power control device can also handle loads up to 1.5 kilowatts (kW),

which is well beyond anything I will use in this demonstration.

The PST2 schematic is shown in Figure 2-22, which points out the robust and safe
design that makes up the PST2. I highly recommend that you purchase an appropriate
number of PST2s to control any AC power loads you may be considering for both safety
and convenience sake. Building your own power controller is really not a good idea. The

PST2 has already passed all appropriate UL and other safety certifications and is ready

to use.
R2 13
O 1|+
MOV2 o—$ L R Lo 2| -
X AL +O 3| Electrical
2 ¥ <7LEDI Ground
Hg AT
Optoisolated
V -
o — Driver
I MOV1 12
BLK (L) ” D<| BLK (L)
1010 o101
201 oWHT(N) WHT {N)o——oz
3 0—o-GRN(G) GRN (G)o__o3
Load Side Line Side

PST2 schematic.

Figure 2-23 is a simple schematic showing how the RasPi pin 7 connects to a PST2.
Nothing is required for the connection other than a pair of wires carrying the GPIO
signal and ground. In this case, I chose physical pin 7 (BCM pin 4) for the control
signal. GPIO 4 (pin 7) connects to the PST2 (+ in) terminal, and the RasPi GND (pin 6)
connects to the PST2 (- in) terminal.

Physical Pin # 7 5
BCM # 4 PST2
Physical Pin #6
/ GND
\\ ‘(I/ NOTE: Read text regarding
J8 PST2 ground connection.

RasPi 3

RasPi-to-PST2 connection schematic.

CAUTION: Do not connect the PST2 ground terminal to the RasPi ground. Simply leave

it unconnected. It is not required nor needed, and it could possibly be an entry point for

mains power if there were some odd and strange failure on the PST2 load side.

All that is required now is to describe the two applets required to control the AC lamp

and the corresponding modifications to the RasPi Python Web server.

AC Lamp Applets

Two applets are required to have the Home device control the AC lamp. The same six-
step applet creation that we used for LED control is used for AC lamp control. The only

differences are detailed in Table 2-1.

TABLE 2-1 AC Lamp Control Applet Parameters

Applet item | Turn-on applet Turn-off applet

Request Turnon AClamp | Turn off AC lamp
phrase

Response The AClampison | The AClampis
phrase off

URL http://mytestsite | http://mytestsite

.org/AClampon .org/AClampoff

Python Web Server Modifications

Two additional code snippets must be added to the existing Python script to handle the
new Web requests that are received for AC lamp control. The complete modified script
is listed below. I also renamed the script extended_test.py to reflect the newly added

functionalities concerning the AC lamp.

Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO
from flask import Flask

app = Flask(_name)

This is the default method that is invoked without an extension
@app.route("/", methods=["'GET', 'POST'])
def index():

GPIO.setmode (GPIO.BOARD)

GPIO.setup(12, GPIO.OUT)

print "Turning the LED on"

GPIO.output(1l2, GPIO.HIGH)

return "LED on"

This method is invoked when an "/off" extension is detected
@app.route("/of", methods=['GET', 'POST'])
def off():

GPIO.setmode(GPIO.BOARD)

GPIO.setup(12, GPIO.OUT)

print "Turning off the LED"

GPIO.output(1l2, GPIO.LOW)

return "LED off"

This method is invoked when an "/AClampon" extension is detected
Rapp.route("/AClampon", methods=['GET', 'POST'])
def AClampon():

GPIO.setmode (GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)

print "Turning on the AC lamp"
GPIO.output(7, GPIO.HIGH)
return "AC lamp on"

This method is invoked when an "/AClampoff" extension is detected
@app.route("/AClampoff", methods=['GET', 'POST'])
def AClampoff():

GPIO.setmode (GPIO.BOARD)

GPIO.setup(7, GPIO.OUT)

print "Turning off the AC lamp"

GPIO.output(7, GPIO.LOW)

return "AC lamp off"

LE name == main_ ":

app.run(host="0.0.0.0"', port=80, debug=True)

Test Run

You will be ready to test this new project once the two additional applets are created,
the modified RasPi software is installed, and the physical circuit is set up. Just execute

the RasPi software with
sudo python extended test.py

Ensure that the PST2 is plugged into the AC mains and an ordinary table lamp is
connected to the PST2. Also ensure that the lamp has been turned on. It will not light
because the PST2 has not connected it to the AC mains. Now speak to the Home device

with this phrase:
"OK Google, turn on AC lamp"

If everything has been set up properly, you should be rewarded with seeing the lamp
turn on and hearing the response phrase “The AC lamp is on.” In a similar manner,

speak the following phrase to turn off the lamp:
"OK Google, turn off AC lamp"

The lamp should turn off after you have spoken the phrase along with hearing the
response phrase “The AC lamp is off.” Figure 2-24 is a terminal window screen shot

showing the print statements associated with the Web requests for the AC lamp.

AC lamp terminal window control print statements.

You may have already realized by now that there is a significant disadvantage to using
the PST2 in the manner described in this project. The issue is that a wire-pair cable
must be connected between the RasPi and the PST2 in order to control the power
device. This may not be a problem if you only have one RasPi dedicated to one powered

device. However, it becomes problematic if you want to control multiple loads that are

situated relatively far apart or even in separate rooms. Such a situation requires
running long lengths of wire cables to different PST2s. This approach is not practical
and would be unsightly and unacceptable for most HA installations. A much better,

very inexpensive wireless solution is presented in the next section.

PST2 WIRELESS CONTROL

It is a simple process to extend the range of control between a RasPi and a PST2 power
device using wireless technology. I chose to use a simple radio-frequency (RF)
transmitter/receiver pair that operates in the unlicensed 433-MHz band. Figure 2-25
shows an inexpensive wireless 433-MHz RF module receiver and transmitter remote
control pair with built-in learning codes for four-channel operation suitable for use
with a RasPi.

Receiver

A 433-MHz transmitter/receiver pair.

There is a coiled wire antenna that is 52 centimeters (cm) long for both the transmitter
and the receiver. These antennas were specifically cut to this length for tuned operation
at 433 MHz. The key to using this design is that only an on/off signal needs to be sent
between the RasPi and the PST2. This solution will not work if any complex data are
required to be sent or a response signal is sent. However, I will be discussing a much
more elegant wireless solution in Chapter 10, where more sophisticated control signals

are required to implement a wireless HA system.

Wireless Communications Setup

The transmitter will generate an encoded RF signal whenever a 5-V signal is applied to

one of its four data input pins. Figure 2-26 is a connection block diagram for the

complete communications link showing both the transmitter and receiver connected to

the RasPi and PST2, respectively.

RasP

5V

i

GND GND Xmit

i

5V

i

Receiver

DO

+IN

GND

PST2

Wireless connection block diagram.

Please note that I used a 5-V wall-wart power supply to provide power to the receiver.

The receiver was installed on a small solderless breadboard, which, in turn, was

mounted on the PST2 using double-backed tape. The physical setup is shown in Figure

2-27.

PST2 with wireless receiver.

It would be a simple matter to mount the receiver in a plastic box for aesthetics and to
prevent any inadvertent damage to the exposed components. Note that no dangerous

voltages are exposed in the breadboard version.

You should also realize that this system design will support four separate remote PST2
devices, where each device has its own dedicated RF channel. These channels will not
interfere with each other because a simple digital encoding scheme is used between the
transmitter and each receiver. All you need to do is copy my single-channel
implementation to any of the other three channels. The only additional software needed
would be the applets and RasPi Web server changes required to support the additional
devices control by the extra channels. My only caution is that interference might be
present if you decide to use another four-channel transmitter/receiver pair in the same
vicinity as this one. Inexpensive transmitter/receiver pairs such as the one I used

usually do not incorporate interference safeguards from similar units.

Figure 2-28 shows how power and input signals are applied to the transmitter. I used
the K1 input, which shows a pushbutton that when pressed will connect that input to
ground. This action means that I had to change the RasPi output on GPIO pin 4 (BCM
mode) from normally LOW to normally HIGH. This was a fairly simple change and is
shown in the following revised extended_test.py code listing, which I renamed

remote_ test.py to indicate its new purpose:

LED

Wire coil antenna [

Y

i ¥ 4 e DC 3V-24V
II ._:I :j j e 5V applied

Note: Control signal applied to K1

Wireless link power and signal connections.

import time

Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO

from flask import Flask

Required to set GPIO physical pin 7 normally HIGH
GPIO.setmode (GPIO.BOARD)

GPIO.setup(7, GPIO.OUT)

GPIO.output(7, GPIO.HIGH)

app = Flask(__name)

This is the default method that is invoked without an extension
@app.route("/", methods=['GET', 'POST'])
def index():

GPIO.setmode(GPIO.BOARD)

GPIO.setup(12, GPIO.OUT)

print "Turning the LED on'

GPIO.output(12, GPIO.HIGH)

return "LED on"

This method is invoked when an "/off" extension is detected
@app.route("/off", methods=['GET', 'POST'])
def off():

GPIO.setmode(GPIO.BOARD)

GPIO.setup(12, GPIO.OUT)

print "Turning off the LED"

GPIO.output(1l2, GPIO.LOW)

return "LED off"

This method is invoked when an "/AClampon" extension is detected

@app.route("/AClampon", methods=['GET', 'POST'])
def AClampon():
GPIO.setmode (GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)
print "Turning on the AC lamp"
Next three statements send a 0.25 second "LOW" pulse
GPIO.output(7, GPIO.LOW)
time.sleep(0.25)
GPIO.output(7, GPIO.HIGH)
return "AC lamp on"

This method is invoked when an "/AClampoff" extension is detected
@app.route("/AClampoff”, methods=['GET', 'POST'])
def AClampoff():
GPIO.setmode(GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)
print "Turning off the AC lamp"
Next three statements send a 0.25 second "LOW" pulse
GPIO.output(7, GPIO.LOW)
time.sleep(0.25)
GPIO.output(7, GPIO.HIGH)
return "AC lamp off"

il i

if name__ == " main_":

app.run(host="0.0.0.0"', port=80, debug=True)

The modification details to the extended_test.py script include
m Making the default output to the 433-MHz receiver a HIGH state

m Changing the AClampon and AClampoff script portions to emit a 0.25-second pulse

instead of a continuous level either HIGH or LOW

You may have noticed that the AClampon and AClampoff portions are now nearly
identical except for the response messages. This is because the RF receiver is set to be
in a latching or toggle mode, which means the state changes form HIGH to LOW or
LOW to HIGH for every received pulse. I could have used only a single applet to
accommodate this situation, but that would have meant using a single phrase such as
“OK Google, toggle the AC lamp” to switch the lamp mode. I chose not to use such a
phrase because many nontechnical users would have no idea what was being requested,
and the user would already need to know the current lamp’s state. The lesson for this
situation is sometimes that you have to be more expansive in your coding to simplify

the user’s experience.

Figure 2-29 is a close-up photograph of the four-channel receiver in which you can
clearly see where you will need to solder the wire coil antenna. The two connection
points going to the PST2 are also clearly indicated. The receiver’s Learning button is

shown in Figure 2-30.

Wire coil antenna
soldered here

- - - .h‘ I\-. L- !"-'-

VT D3 D2 D1 DO 5V GND
‘ to PST2
- IN

+IN

NOTE: 4 channel output

Four-channel receiver.

Learning button

Learning button.

The receiver must be set up in the toggle or latching mode in order for the system to

work properly. The following steps set the receiver to a particular mode:

1. Press the Learning button once to set the momentary mode. This means that the

channel output will remain LOW for as long as a signal is being received.

2. Press the Learning button twice to set the toggle mode. This means that the channel
output will change state, that is, from HIGH to LOW or LOW to HIGH, and remain in

the new state.

3. Press the Learning button three times to set the interlocked mode. This means that

the selected channel will be active, and all other channels will become inactive.

Test Run

I connected the AC lamp to the PST2 in exactly the same way as I did in the preceding
demonstration. I next plugged in the 5-V wall-wart power supply for the receiver to
power it on. I next pressed the Learning button twice to set it to the latching or toggle
mode. You will only have to set the mode one time. The receiver “remembers” the

setting even after the 5-V power has been turned off and on.

The AC lamp turned on and stayed on after the trigger phrase was spoken to the Home
device. Likewise, the lamp turned off when the off-action trigger phrase was spoken.

This last demonstration concludes this chapter.

SUMMARY

This chapter started with a detailed discussion of how the Google Home Personal Voice
Assistant works. I also described how to set up the Home device in its normal

configuration.

The next section described how to logically connect the Home device to a RasPi. The
first step in the connection process was to use the ifttt.com website to create a Web
applet. This applet converts a voice command into an actionable Web request. This
Web request is then sent over the Internet to a Web server hosted on the HA RasPi. A
very detailed discussion was provided concerning the six-step process used to create the

Web applets.

The RasPi Web server software was next described. A Python script was listed that
handles the incoming Web requests and creates appropriate responses using the GPIO

subsystem.

The first demonstration concerned the control of a single LED. The LED was turned on
and off using commands spoken into the Home device. The next demonstration
controlled an AC lamp using a similar voice command. A power control device called
the PST2 was used between the RasPi and the AC lamp. The final demonstration was an
extension of the second in which PST2 control was remotely extended using a four-
channel transmitter/receiver pair. This arrangement allowed for great flexibility in the

control of mains-powered devices in an HA environment.

Raspberry PiImplements a Google Voice Assistant

CHAPTER 1 SHOWED YOU HOW to connect the inexpensive Google Voice Kit to a
RasPi and have the RasPi respond to spoken voice commands. Chapter 2 showed you
how to interconnect a Google Home device to a RasPi and again have the RasPi respond
to spoken voice commands detected by the Home device. In this chapter, I will show
you how to use the RasPi all by itself to emulate a Google Voice Assistant and respond
directly to spoken voice commands. This approach will be the least costly of all the
Google Voice Assistant implementations but will likely require the most effort on your

part to duplicate the demonstrations.

I would also like to extend my appreciation to several Google Home—type device
developers and especially to Keval Patel for his great July 2017 blog, “Turn Your
Raspberry Pi into a Homemade Google Home.” I used a good deal of information from
this blog, although I had to make several modifications to make an operable system.
This is not a criticism of Keval but instead is a consequence of using open-source

software, which is dynamic and constantly changing.

AUDIO SETUP

The initial steps in building your own Google Home assistant involve setting up the
audio components supporting the project. The RasPi audio output should be forced to
use the 3.5-mm AV jack located on the board. This is done by entering the following

command in a terminal window:

Parts List

https://avxhm.se/blogs/hill0

mounir
Typewriter
https://avxhm.se/blogs/hill0

Item Model Quantity Source

RasPi 3 BorB+ 1 adafruit.com
amazon.com
mcmelectronics.com

USB microphone Commodity 1 amazon.com

USB speaker Commodity 1 amazon.com

Power Switch Tail Il 1 amazon.com

AC table lamp Commodity 1 Home improvement store

Hobby-grade servo HITEC HS-311 1 amazon.com

6-V DC power supply Commodity 1 adafruit.com

sudo raspi-config
Select Advanced Options, and then click on the Audio option. Next, click on
2. Force audio output 3.5 mm jack

Any audio signals generated by the RasPi will now be directed to the onboard AV jack.
You should now ensure that the amplified USB speaker(s) is(are) plugged into the

RasPi. Next, enter the following command into the terminal window:
speaker-test -t wav

You should start hearing “front left” coming from the speaker(s) and also see the status

messages shown in Figure 3-1.

File Edit Tabs Help

pi@raspberrypi:

Speaker test screen display.

The next portion of the setup concerns the USB microphone. I used a large,
semiprofessional USB microphone for this project, which is shown in Figure 3-2. I used
this simply because I had already purchased it for use in an earlier AV project. You can
choose to purchase a similar device or a much more inexpensive model, such as the one

shown in Figure 3-3.

USB microphone.

Inexpensive USB microphone.

The inexpensive model also should be adequate for this project because all it has to do

is detect spoken voice commands. The more expensive model had to adequately record

both music and voice signals.

In either case, just enter the following command to record a brief audio clip to test the

USB microphone:

arecord --format=S16 LE --duration=10
—--rate=16000 --file-type=raw test.raw

Then speak directly into the microphone for approximately 10 seconds. It really does
not matter what you say because it will be recorded in an audio file for an immediate

payback. The playback is initiated by the following command:

aplay --format=S16é_ LE --rate=16000
test.raw

You should start hearing the recording that you just made through the attached
speaker(s). Recheck the RasPi configuration settings and the component connections if

you do not hear the recording.

INSTALLING AND CONFIGURING THE PYTHON 3
ENVIRONMENT

The Google Assistant software suite requires that a Python 3 environment be installed
and configured on the RasPi. The initial step is to ensure that all the current software is

updated. Enter the following command in a terminal window:
sudo apt-get update

The next command sequence will install and set up a Python 3 environment:

sudo apt-get install python3-dev
python3-venv

python3 -m venv env

env/bin/python -m pip install --upgrade
pip setuptools

Certain required Python dependencies were also installed using this command

sequence.

You will now need to activate the Python environment by entering this next command:

source env/bin/activate

You should notice that a virtual Python environment is now in place because the

terminal prompt is prepended with (env).

The Google Assistant Software Development Kit (SDK) created for the RasPi now needs

to be downloaded and installed. Enter this command to do that:

python -m pip install --upgrade
google-assistant-library

The Google Assistant software should now be installed on the RasPi. It is now time to

focus on the Google cloud portion of the system.

INSTALLING AND ENABLING THE GOOGLE CLOUD
PROJECT

There are number of steps in this installation process, some of which are duplicates of
steps taken in the Cloud installation process shown in Chapter 1. I will go through all

the steps to ensure that the project is set up properly.

The first step is log onto your Google account. If don’t have an account, you could not
have completed the Chapter 1 project, and hence, all the following steps are required.
Go and create an account at https://accounts.google.com/SignUp?hl=en; otherwise, log

into your existing account.

Next, go to the Google Cloud Platform website at
https://console.cloud.google.com/getting-started and create a new project. This is
easily accomplished by clicking on the drop-down arrow in the Chapter textbox located
next to the Google Cloud Platform title. At least one project should be displayed in the
listing, reflecting the Chapter 1 demonstration. Figure 3-4 shows the screen after I

clicked on the drop-down arrow.

Select a project 3 NEWPROJECT

Q, Search projects and folders

RECENT ALL
Name D
+ §* My Google Home & massive-team-207600
3» Chapterz @ chapter3-206415
$* Chapter3 @ chapter-3
%* \Voice Assistant @ voice-assistant-201915

CANCEL OPEN

New project screen.

Click on the New Project button located at the upper right-hand corner of the screen to
start a new project. You first have to provide a project name. You may choose any name
that makes sense to you. I chose the name My Google Home to reflect the project being
built. It will take a few seconds for the Google Cloud Platform website to create the

project. Once created, you will be returned to the preceding screen.

Once again, click on the drop-down arrow in the Projects textbox, and select the newly
created project. You will be shown a configuration screen, a portion of which is shown
in Figure 3-5. You will need to click on Enable APIs and get credentials such as keys in

the Getting Started section.

= Google Cloud Platform & My Googl

DASHE OARD ACTIVITY

a® Project info

Project name
My Google Home

Project 1D
massive-team- 207600

Project number
622524005038

= Goto project settings

&) Resources

This project has no resources

Trace

No trace data from the past 7 days

—» Get started with Stackdriver Trace

® Getting Started

click here for

API Enable APIs and get credentials like keys —— s
credentials

19; Deploy a prebuilt solution

API setup screen.

You will first need to enable the Google Assistant API. You can do this by clicking on
the project Dashboard icon and then clicking on the Enable APIs and Services button.
You should next enter Google Assistant in the search textbox to bring up the
appropriate service. Click on the Google Assistant API box once it appears, and finally
click on the Enable button. This last series of actions will link the Google Assistant
services to your Google account, thus enabling the voice-recognition function as well as

all the other Google Home functions.

Next, click on Credentials in the column labeled APIs & Services, which should have
appeared on the browser after the Google Assistant services were enabled. This action
will take you to another screen where you actually create the project credentials by

clicking on the drop-down arrow in the Create Credentials screen, as shown in Figure 3-
6.

APls
Credentials

Y¥ou need credentials to access APIs. Enable the 4Pls you plan to
use and then create the credentials they require. Depending on
the API, you need an API key, a service account, or an OAuth 2.0
client ID. Refer to the APl documentation for details.

Create credentials -

Create Credentials screen.

Select OAuth Client ID to proceed, as shown in Figure 3-7.

APls
Credentials

You need credentials to access APIs. Enable the APls you plan to
use and then create the credentials they require. Depending on
the API, you need an API key, a service account, or an OAuth 2.0
client ID. Refer to the API| docurnentation for details.

Create credentials -

APl key
|dentifies your project using a simple API key to check quota and access

OAuth client ID
Requests user consent 50 your app can access the user's data

Service account key
Enables server-to-server, app-level authentication using robot accounts

Help me choose
Asks a few questions to help you decide which type of credential to use

Credentials selection screen.

The Create OAuth Client ID screen appears, as shown in Figure 3-8.

= Google Cloud Platform 2 My Google Home «

& Create OAuth client ID

Application type
Web application

Android Learn maore
Chrome App Learn more
i0S Learn more
PlayStation 4

@ Other

Mame

My Google Home device

Create OAuth Client ID screen.

Enter your project name as I did for my project, and ensure that you select Other for

the Application type. This is very important because the project will not build correctly
unless the Other type has been selected. You now need to click on the Create button to
generate the appropriate credentials for your project. This will take a few seconds, and

you should see a results screen similar to the one shown in Figure 3-9.

= Google Cloud Platform 2 My Google Home

API Credentials

-
<

Credentials OAuth consent screen Domain verification

EE

Create credentials ~

?

Create credentials to access your enabled AP|s. Refer to the AP| documentation for details.

0Auth 2.0 client IDs
Name Creation date Type Client 1D

JSON
My Google Home Jun 18,2018 Other 622524005038-im 5ij04c4f3dscdkurpflppnjni983d4 apps.googleusercontent. com ra x
b o download

[1]
I
/

Generated credentials.

You will now need to download the resulting JSON file to the RasPi. Notice the

annotation in the figure that points out the download icon. Just expand the screen if
you do not see the icon. The JSON file will be downloaded to the RasPi after you click
on the icon. It typically will be stored in the Downloads directory. You will next need to
rename it and move it into the Home directory. The default JSON name is incredibly
complex, and you should not try to copy it manually. Instead, enter the following

commands:

cd Downloads
mv client secret <press the tab key for
auto completion> ~/assistant.json

These commands will move the new credentials file from the Downloads directory to
the Home directory and rename it assistant. json, a much easier file name to
handle.

AUTHENTICATING THE RASPI TO THE GOOGLE CLOUD
PLATFORM

You first need to install the authorization tool. Ensure that you are in the virtual Python
environment. I will now include the prepend to indicate this situation. Do not enter it

as part of the next command:

(env) python -m pip install
—--upgrade google-auth-ocauthlib[tool]

Next, execute the tool using the following command:

(env) google-ocauthlib-tool
—-—client-secrets "PATH TO YOUR JSON
FILE" --scope https://googleapis.com/
auth/assistant-sdk-prototype
--save --headless

In my case, I substituted ~/assistant.jsonfor "PATH TO YOUR JSON FILE".

You should do the same if you followed my previous download instructions.

The result of this last command is an automatically generated authentication URL, as
shown in Figure 3-10. You should copy and paste the authentication URL into a

browser. Do not try to copy the complex URL manually.

Authentication URL.

The authentication URL will create a complex authorization code that you should copy
and paste back into the terminal window at the prompt Enter the Authorization Code.
The authentication tool, which is still running on the RasPi, will now automatically
place the JSON credentials file into the appropriate directory that the Google Assistant

requires to grant permission for normal functions.

LED Operations Indicator

A LED will indicate when an active conversation is happening with the Google Assistant
service. The LED is connected to GPIO pin 25 (BCM mode), as shown in the Fritzing
diagram (Figure 3-11).

fritzing

LED indicator Fritzing diagram.

The LED indicator is activated by means of a Google Assistant callback function.

Callback functions are events that are triggered by specific actions. For instance, the
EventType.ON CONVERSATION TURN STARTED callback will be triggered when the
conversation with the Google Assistant begins. Likewise, the

EventType.ON CONVERSATION TURN FINISHED callback will be triggered
whenever the conversation is terminated. LED indicator activation is tied directly to

each of these callbacks, as you will shortly see in the Python script listing.

It is important to realize that LED activation or inactivation is triggered by a state
change happening with the Google Assistant software. It is not directly related to actual
data but instead to the state of data. State of data is called metadata because it reflects
some property of data, not the actual value or content of those data. Using metadata for
home automation (HA) control is problematic at best because of severe limitations on
what can be achieved using strictly metadata. Some readers may recall a mains power
device called the Clapper that was widely advertised on TV many years ago. The user
would clap his or her hands to turn on a device such as an old-fashion TV and clap
again to turn it off. No actual data were received by the clapper device other than a
noise impulse created by the hand clap. The presence or absence of impulse noise was
effectively the metadata for the clapper. I believe that it worked, but eventually it was
superseded by much more flexible remote controls that actually transmitted real data in

lieu of metadata.

Python Script

The RasPi requires a program to both authenticate and initialize the Google Assistant
software. This is accomplished by the following Python script. However, the RPi.GPIO
library must first be installed to allow for programmatic control of the GPIO pins. This

installation will happen after you enter the following command:
pip install RPi.GPIO

Once you have installed RPi . GPI0, you will be ready to enter the Python script. Either
enter the script into the nano editor or simply download it from this book’s companion
website, www.mhprofessional.com/NorrisHomeAutomation. The script is named

main.py and must be stored in the Home directory.

#!/usr/bin/env python
from _ future_ import print_function

import argparse
import os.path
import json

import google.ocauth2.credentials

import RPi.GPIO as GPIO

from google.assistant.library import Assistant

from google.assistant.library.event import EventType

from google.assistant.library.file helpers import existing file

GPIO.setmode (GPIO.BCM)
GPIO.setup(23, GPIO.OUT)

def process_event(event):
wnnpretty prints events.
Prints all events that occur with two spaces between each new conversation and a single
space between turns of a conversation.
Args:
Event(event.Event): The current event to process.
if event.type == EventType.ON_CONVERSATION_ TURN_STARTED:
print ()
GPIO.output (25, True)

print (event)

if (event.type == EventType.ON CONVERSATION TURN FINISHED and event.args and not
event.args['with_follow on_turn']):

print ()

GPIO.output (25, False)

def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--credentials’', type=existing_file,
metavar='OAUTH2 CREDENTIALS FILE',
default=os.path.join(
os.path.expanduser<'/home/pi/.config'),
'google-cauthlib-tecol"',
‘credentials.json’
Y,
help='Path to store and read OAuth2 credentials')
args = parser.parse_args()
with open(args.credentials, 'r') as f:
credentials = google.ocauth2.credentials.Credentials<token=None,
**jgon.load(f))
with Assistant(credentials,"My Google Home device") as assistant:
for event in assistant.start():
process_event (event)

if _ name_
main ()

__main__

TIP: The above listing contains very long sets of instructions that display on multiple
lines in the listing. The correct script requires that the long instructions sets be entered
without line breaks and in accordance with Python’s indention format. I highly
recommend that you download the script from this book’s website unless you are very

comfortable in writing Python scripts.

You will now need to create a shell script that will initialize and run the Google
Assistant software. Enter the following command to start the nano editor with script

named google-assistant-init.sh:
sudo nano google-assistant-init.sh

Next, enter the following into the editor:

#!/bin/sh
/home/pi/env/bin/python3 -u
/home/pi/main.py

Save the file and exit the editor. Now grant executable permissions to the shell script by

entering this command:
sudo chmod +x google-assistant-init.sh

You are now finally ready to test the system. Ensure that everything is connected,

including the USB microphone and speaker(s).

Test Run

Enter the following command to start the Google Assistant on the RasPi:
bash google-assistant-init.sh

Next, speak this phrase clearly into the microphone: “OK Google, what time is it?” You
should be delighted to hear the words “The time is five forty-nine.” Of course, your time
will be different, but the system should respond. In addition, you should have observed
the LED being lit when you started the conversation. It should have gone off after the

system responded with the time, indicating that the conversation had ended.

Conversations may be brief, as in the case of requesting the time, or can be extended if
the response is lengthy. Look at Figure 3-12, where the weather report was quite

extensive. This conversation lasted over 10 seconds.

File Edit Tabs Hel

in use, continuing

Conversation log.

At this point, I have presented everything you need to build your own Google Home
device using only a RasPi with two USB peripherals. This project is a good emulation of
the commercial Google Home unit, but it is still quite limited in its usefulness for HA
applications. The next section discusses how to significantly increase the device’s

flexibility and utility, especially for use in HA systems.

EXTENDING THE RASPI GOOGLE HOME DEVICE

The device as configured at this point has a very limited use in an HA system. It could
function in a “clapper-like” mode, as I explained earlier. That restricted operational
mode was due to the device only responding to state changes conveyed by metadata.
Fortunately, the Google Assistant software provides the capability to parse the actual
data present in a conversation. This capability will allow for a great increase in the
utility of the device, especially for HA applications. I have created duplicates of two
demonstrations that were presented in Chapter 2. The first one deals with control of a

LED and the second one with control of an AC lamp. The second demonstration also

uses a Power Switch Tail IT (PST2), which I introduced in Chapter 2.

Test Setup

Figure 3-13 is a Fritzing diagram showing how to set up both the LED and the PST2
peripherals with the RasPi. You should note that the original LED connected to GPIO
pin 25 is also shown in the diagram. Table 3-1 details all the connections between the T-

Cobbler and the test peripherals.

LED1 LED2

P5T22(-)

fritzing

Fritzing diagram for test setup.

Table 3-1 Test Connections

Peripheral RasPi Physical RasPi BCM
Connection Pin Number Pin Number
Resistor R1 22 25
Resistor R2 16 23
PST2 1(+) 18 24
PST2 2 (-) 14 GND
LED 1 cathode 14 GND
LED 2 cathode 14 GND

Modified Python Control Script

The Python control script that follows was modified from the main.py script that was
presented previously. It has additional statements for the control of two additional
GPIO pins, one to control a LED and the other to control the PST2. GPIO pin 23
controls the LED, whereas GPIO pin 24 controls the PST2. The key statement that

allows the spoken data to be parsed is
speech text = event.args["text"]

The Python string variable speech text now contains all the user spoken text. This
variable consequently can be tested to determine whether it contains specific
instructions, which will then be acted on. For example, to turn on the AC lamp, the user
must say, “OK Google, turn on the AC lamp.” The following code snippet tests the string
variable to determine whether it contains this phrase and, if so, activates the

appropriate GPIO pin connected to the PST2:

if speech text == 'turn on the AC lamp':
GPIO.output(24, GPIO.HIGH)

Similar code statements detect phrases for controlling the LED and turning off the AC

lamp.

The following listing is a completely modified main.py for the expanded control. Note
that it is named main_extended.py on this book's companion website,
www.mhprofessional.com/NorrisHomeAutomation, but must be renamed main.py and

placed in the Home directory to operate correctly with the RasPi.

#!/usr/bin/env python

from

_ future import print_function

import argparse

import os.path

import json

import google.oauth2.credentials
import RPi.GPIO as GPIO

from
from
from

GPIO.
GPIO.
GPIO.
GPIO.

google.assistant.library import Assistant
google.assistant.library.event import EwventType
google.assistant.library.file _helpers import existing file

setmode (GPIO.BCM)

setup (23, GPIQ.OUT)
setup (24, GPIO.OUT)
setup (25, GPIO.OUT)

def process event(event):

"nnpretty prints events.

Prints all events that occur with two spaces between each new

conversation and a single space between turns of a conversation.

Args:

event (event.Event): The current event to process.

mmnm

if event.type == EventType.ON_CONVERSATION_ TURN_STARTED:

print ()
GPIO.output (25, True)

print (event)

if (event.type == EventType.ON_CONVERSATION_TURN_FINISHED and

event.args and not event.args['with fellow on turn']):
print{)
GPIO.output (25, False)

if event.type == EventType.ON RECOGNIZING SPEECH FINISHED:
speech text = event.args["text"]

print ("speech text: " + speech text)

if speech_text == 'turn on the LED':
GPIO.output (23, GPIO.HIGH)

if speech_text == 'turn off the LED':
GPIO.output (23, GPIO.LOW)

if speech text == 'turn on the AC lamp':
GPIO.output (24, GPIO.HIGH)

if speech_text == 'turn off the AC lamp':

GPIO.output (24, GPIO.LOW)

def main():
parser = argparse.ArgumentParser (
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--credentials', type=existing file,
metavar='OAUTH2 CREDENTIALS FILE',
default=os.path.join(
os.path.expanduser('/home/pi/.config'),
'google-oauthlib-tool’',
'credentials.json’
),
help='Path to store and read OAuth2 credentials')
args = parser.parse_args()
with open(args.credentials, 'r') as f:
credentials = google.oauth2.credentials.Credentials (token=None,
**jgon.load(f))

with Assistant(credentials, "My Google Home device") as assistant:
for event in assistant.start():
process_event (event)

if _name__ == ' main__':
main ()

TIP: The above listing contains very long sets of instructions that display on multiple
lines in the listing. The correct script requires that the long instructions sets be entered
without line breaks and in accordance with Python’s indention format. I highly
recommend that you download the script from this book’s website unless you are very

comfortable in writing Python scripts.

Test Run

The modified main.py is run using the same shell script command previously
described:

bash google-assistant-init.sh

I first tested the new LED with the spoken command, “OK Google, turn on the LED.” I
observed that the new LED did light up as expected. The original LED indicating an

ongoing conversation also lit but stayed on for only the conversation duration.

I next spoke the phrase, “OK Google, turn off the LED.” I then observed the new LED

turn off, which confirmed that proper LED control was happening.

Similarly, speaking the phrases, “OK Google, turn on the AC lamp” and “OK Google,
turn off the AC lamp,” controlled the AC lamp through the PST2 peripheral, as it had in
Chapter 2’s demonstration. Of course, you can extend the PST2 range by using the RF
devices I discussed in Chapter 2. You still need to modify the preceding script to
accommodate the active low impulse required by the RF receiver using exactly the same
code listed in the Chapter 2 Python script.

These simple demonstrations amply show that the RasPi Google Home device is now

capable of controlling a variety of devices, including mains-powered devices.

STILL MORE EXTENDING OF THE RASPI GOOGLE
HOME DEVICE

You probably have noticed by now that all the control actions implemented on the
RasPi Google Home device have been binary. By this I mean that the device being
controlled is either on or off. While this situation is perfectly acceptable for most HA
applications, there are some applications where the device must be controlled in a more
granular sense. I have developed an approach that allows for the direct interpretation of
spoken commands into equivalent RasPi control actions beyond the simple on/off

control states.

I will show how this may be accomplished in the next demonstration using a hobby-
grade servo system. The servo I used is shown in Figure 3-14. It is a relatively

inexpensive model yet is perfectly suited for this demonstration.

Hobby-grade servo.

You might at this point question the use of a servo in an HA application. I would
respond that servos are often used in home security applications to remotely position
Web-based surveillance cameras. In any case, the primary purpose of this
demonstration is to show you how to control an HA device beyond simply turning it on

or off.

Basic Servo Facts

It is very important to understand how a servo functions before attempting to create a
program to control one. An analog servo is essentially an electric motor that
incorporates an electronic control circuit that receives periodic digital pulses and
positions or rotates the motor shaft in response to those pulses. Figure 3-15 is a block

diagram illustrating the principal components that make up an analog servo.

Rotation
Gearbox Y\
DC Motor for Speed Output Shaft

Reduction A/
Positon
A Sensor

Error Signal
Error Detection . Input Pulse Train

Amplifier

Analog servo block diagram.

The input digital pulse train that controls the servo’s shaft position is known as a pulse-
width modulation (PWM) waveform. The width of the high portion of the periodic
pulse train is exactly proportional to the shaft position. Pulse widths range from 1.0 to
2.0 milliseconds (ms) and correspond to £60° shaft positions. A series of high-level
pulses with widths of 1.5 ms and a frequency of 50 hertz (Hz) will cause the shaft
position to be at its neutral position or midrange between the +60° shaft end positions.

Figure 3-16 shows a 50-Hz, 1.5-ms PWM waveform.

20.0 mS

A 1.5-ms pulse-width, 50-Hz PWM waveform.

The Python software controlling the servo must generate a pulse width corresponding

to the commanded position for the servo shaft position angle.

Test Setup

The Fritzing diagram in Figure 3-17 shows how the servo is connected to the existing
demonstration hardware. You should notice that I used a separate 6-V power supply for
the servo. Do not try to use the RasPi 5-V supply because there is insufficient current to
drive the servo and the RasPi simultaneously. You will cause the RasPi to crash if you
attempt to connect the servo power input to the 5-V supply. The 3.3-V GPIO pin output

voltage is adequate to control the servo signal line without any issue.

Fin 18 (BCM)

Fritzing diagram for servo test setup.

Python Control Script Incorporating the PWM Option
The Rpi.GPIO library provides the means to easily generate PWM signals suitable for

servo control. The essential servo control parameters for the hobby servo used in this
demonstration are listed in Table 3-2. Please note that the pulse width times for the
hobby grade servo used in this demonstration are considerably longer than the
standard pulse widths discussed above. This is not unusual and is primarily due to the
inexpensive components used in such a device. You should always read the
manufacturer’s datasheet to ensure you are using the correct timing information for the

device in use.

Table 3-2 Servo Control Parameters

Parameter

Value

Frequency

50 Hz (20-ms period)

Neutral position pulse
width

7.5 ms

-60° position pulse width | 5.0 ms
+60° position pulse width | 10.0 ms
Power supply 6V

I adjusted the shaft position notation from the £60° ranges to a single 0—120° range to
facilitate the spoken commands used with the RasPi Google Home device. The phrase
“OK Google turn servo to zero” will actually cause the servo shaft to turn to the —60°
position. Likewise, the phrase “OK Google turn servo to one hundred twenty” will cause

the servo shaft to turn to the 60° position. Finally, the phrase “OK Google turn servo to

sixty” will position the servo shaft to the neutral or 0° position.

The following is the modified Python script incorporating the PWM control statements.

It is named main_servo.py on this book's companion website but must be renamed

main.py in the Home directory.

#!/usr/bin/env python

from __ future import print_ function

import argparse
import os.path
import json

import google.ocauth2.credentials

import RPi.GPIO as GPIO

from google.assistant.library import Assistant

from google.assistant.library.event import EventType

from google.assistant.library.file helpers import existing file

GPIO.setmode(GPIO.BCM)

GPIO.setup(18, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)
GPIO.setup(24, GPIO.OUT)
GPIO.setup(25, GPIO.OUT)

setup PWM output on pin 18 at a 50 Hz rate
pwm = GPIO.PWM(18, 50)

start the PWM pulses for a 0 degree position
pwm.start(5.0)

def process event(event):
""'"pretty prints events.
Prints all events that occur with two spaces between each new
conversation and a single space between turns of a conversation.
Args:
event(event.Event): The current event to process.
if event.type == EventType.ON_CONVERSATION_TURN_STARTED:
print()
GPIO.output(25,True)

print({event)

if (event.type == EventType.ON CONVERSATION TURN FINISHED and
event.args and not event.args['with_follow on_turn']):
print()
GPIO.output(25,False)

if event.type == EventType.ON RECOGNIZING_ SPEECH FINISHED:

T e mm —_— e e B L L L T L R |

SREECIl LEAL T EVeElNL.dLlYyYys | LEAL)

print("speech text: + speech text)

if speech_text == 'turn on the LED':
GPIO.output(23, GPIO.HIGH)

if speech_text == 'turn off the LED':
GPIO.output(23, GPIO.LOW)

if speech_text == 'turn on the AC lamp':
GPIO.output(24, GPIO.HIGH)

1f speech_text == 'turn off the AC lamp':
GPIO.output(24, GPIO.LOW)

if speech text == 'turn Servo to 0':

pwm.ChangeDutyCycle(5.0)

if speech_text == 'turn Servo to 30':
pwm.ChangeDutyCycle(6.25)

if speech text == 'turn Servo to 60':
pwm.ChangeDutyCycle(7.5)

if speech text == 'turn Servo to 90':
pwm.ChangeDutyCycle(8.75)

if speech_text == 'turn Servo to 120':
pwm.ChangeDutyCycle(10.0)

if speech_text == 'turn Servo off':
pwm.stop()

def main():
parser = argparse.ArgumentParser (
formatter class=argparse.RawTextHelpFormatter)
parser.add _argument('--credentials', type=existing_ file,
metavar="'OAUTH2 CREDENTIALS FILE',
default=os.path. join(
os.path.expanduser (' /home/pi/.config'),

'google-cauthlib-tool’,
'credentials.json'’
) r
help='Path to store and read OAuth2 credentials')
args = parser.parse_args()
with open(args.credentials, 'r') as f:
credentials = google.oauth2.credentials.Credentials(token=None,
**json.load(f))

with Assistant(credentials, "My Google Home device") as assistant:
for event in assistant.start():
process_event(event)

if name == ' main_':

main()

TIP: The above listing contains very long sets of instructions that display on multiple
lines in the listing. The correct script requires that the long instructions sets be entered
without line breaks and in accordance with Python’s indention format. I highly
recommend that you download the script from this book’s website unless you are very

comfortable in writing Python scripts.

Test Run

The modified main.py is run using the same shell script command described

previously:
bash google-assistant-init.sh

I first tested the servo to move to the 60° position with the spoken command “OK
Google, turn servo to sixty.” I observed that the servo moved from the initial 0° position
to the 60° position as commanded. The conversation LED also turned on, as expected,
indicating that an ongoing conversation was in progress. Incidentally, the spoken
response was “Sorry, I don’t know how to help with that yet.” This is the Google
Assistant’s standard phrase generated when dealing with an abnormal request such as
turning on a servo. You should ignore the response. There is a way to suppress this
warning response, but it would needlessly complicate the software without any real
benefit.

I next spoke the phrase “OK Google, turn servo one hundred twenty.” I then observed
the servo turn fully clockwise to one of its limiting positions. The other limiting position
in my context is the 0° command. I went through all the other positional commands,

confirming that the servo did reposition as expected.

Finally, I spoke the phrase “OK Google, turn servo off.” I observed that the servo
stopped running, as can be seen by recognizing that it is no longer making any minute

vibrations.

This last demonstration showed that a RasPi Google Home device is capable not only of
binary control but also, when using appropriate programming extensions, of generating
specific and unique device control actions. The use of this extended control approach is
very efficient when compared with implementing a similar approach using Web-based
requests, as was demonstrated in Chapter 2. In the latter approach, you have to create
many additional applets that would issue granular servo control movements.
Additionally, the RasPi Web server would require an equal number of conditional

blocks to process the unique Web requests for each servo positioning request. This

additional complexity is completely removed when using my approach as detailed in
this chapter. The choice of which approach to use is totally up to you and relies on the

specific HA application and how best to meet all system requirements.

SUMMARY

This chapter’s intent was to demonstrate how to design and build a RasPi emulator of a
Google Home device. This design used only the RasPi with the addition of a USB

microphone and USB speaker for speech detection and audio response.

I initially showed you how to set up the RasPi for proper audio operations that would
support the design. A Python 3 installation including Google Assistant software was

next introduced, including how to run a virtual Python environment.

The installation and configuration of a Google Cloud project was discussed next. This
mirrored in many respects the Chapter 1 presentation. The important authentication

process was covered in fine detail.

I next presented a Python script that would run the Google Assistant software to cause
the RasPi to emulate a Google Home device. A test was then conducted that proved that

the RasPi did function properly as a Google Home device.

The following discussion included a demonstration of how to extend the default
functions for the RasPi Google Home emulator. The test included controlling a LED

and an AC lamp, similar to what was done in Chapter 2.

Finally, I presented an approach for device control that went well beyond the simple
on/off controls demonstrated so far. This test showed how to control a servo motor,

similar to one that might be used with a remote-controlled webcam.

Raspberry Pi GPIO Control with an Amazon Echo

IN THIS CHAPTER, I WILL demonstrate how to control some RasPi GPIO pins using
an Amazon Echo personal voice assistant. This is similar to what was demonstrated in
Chapter 2, except that in Chapter 2 I used the Google Home device. There is a
significant difference between the approach used by Amazon and that by Google for
connecting to voice assistant devices. I will explain the Amazon approach and point out

some pros and cons of the Amazon and Google methods.

WEMO DEMONSTRATION

It would be informative and helpful to first demonstrate how the Amazon Echo
connects with a commercial smart home device. This demonstration uses a Belkin-
manufactured Wemo device that is directly controlled by an Echo unit. This

demonstration uses a Wemo mini WiFi Smart miniplug, which is shown in Figure 4-1.

Wemo smart miniplug.

This device must first be set up using a smartphone app called the Wemo app. I used an

iOS smartphone for app installation. Figure 4-2 shows the smartphone Wemo app

screen.

Wemao Mini

Wemo app screenshot.

The Echo device also must be linked to the Wemo device using this spoken command:
“Alexa, discover devices.” It typically takes an Echo device about 45 seconds to
complete the discovery process. I had previously plugged an AC table lamp into the
Wemo device in order to have an easy way to determine when the Wemo device was

activated. I did see the table lamp turn on when I spoke this command: “Alexa, turn on

the Wemo.”

Parts List
Item Model Quantity Source
RasPi 3 Bor B+ 1 adafruit.com
amazon.com
mcmelectronics.com
Smart plug Belkin Wemo miniplug 1 amazon.com
Echo device Any Alexa unit such as 1 amazon.com
Basic, Spot, Show, or Tap
Power Switch Tail Il 1 amazon.com
AC table lamp Commodity 1 Home improvement store

The Wemo device may also be controlled directly from the Wemo app simply by
tapping on the On/Off button icon. Turning off the lamp with the Wemo was done
using this command: “Alexa, turn off the Wemo.” The lamp turned off after the
command was spoken. These actions confirmed that the Echo unit was properly
controlling the Wemo device through my local WiFi network. This was an important
confirmation that directly leads into how the Echo device can control the GPIO pins on
a RasPi. But first I need to introduce the Alexa Skill before describing how to control
GPIO pins with an Echo device.

Alexa Skill

Alexa is the name of Amazon’s voice service, just as Google Assistant is the name of
Google’s voice service. Alexa is also the alert name that activates voice service for an
Echo unit, as I specified in the preceding spoken-command examples. Alexa provides
certain functionalities, or skills, as they are preferably called in the voice service.
Thousands of skills are presently available, with many provided by companies that
manufacture devices for the Echo line of devices or provide complementary services
that are integrated with overall Amazon services. Some examples of the latter include
Starbucks, Uber, and Capitol One.

The Alexa Skills Kit (ASK) is a collection of APIs, utilities, documentation, and code
samples that allow developers to fairly easily create and test new skills. Developers
using ASK can take advantage of a powerful infrastructure in designing and building
high-quality skills capable of being run on tens of millions of Alexa-enabled devices.
ASK is Amazon’s answer to Google’s Voice Assistant API and Cloud Platform
infrastructure. I will not comment on which is better or worse but will simply say that I

am presenting both in this book for your information and use as you see fit.

There some basic components that make up an Alexa skill you should know about.

These are shown in the custom Alexa Skill design screen in Figure 4-3.

= () amazon alexa

£ Wour Sidily Sample sidll 18l Test Dotribtion
l @ English (U5
W Skill builder checklist
_ liz Kit D C ool g oy gy g
AF alls Kit Dy r o il cang the semaaladior in the (e tab, or
WAL YO oha e
+1 Interaction Maodel Y = || iy
i () an alexa
Brred ATt
= Internis [4)
w Rulltoda batealt]
AMATON Falibagkintant Resources
AMATON Concelintint Documentaticn
Refier to cwr technkcal documents Tor detailed
AMATON Haint i Gt on busdang custom skl
AMAION Stopintent Sample Alexa Projects
WM:,nuremrrﬂﬂr.wumw started
. ST hcihy uriineg o of cur ASExS projicts on
Shot Types 100 & aAdd reerer
0N Edeior weekly Office Hours
Drop in with yosur gusestions ansd thaughts
x InceBees We're here 1o help you.
Alexa Developer Forums
£ Endpoine Wit Our fonems to et indgened, join our Altx
developer COMmmunity.
147 1ntem Histery

Custom Alexa Skill design screen.
The key skill components are
m Utterance: Any spoken phrase

m Invocation: A spoken phrase that starts an action (An action is also known as an

intent in the ASK framework.)
m Slot: The objects of the intent, that is, what you want to do

m Interaction model: The collection of utterances, invocations, and slots that make

up a conversation between a user and an Echo device

The spoken command “Alexa, turn on the Wemo” is an utterance that begins a
conversation. The word Alexa is the default alert word to an Echo device, arming it to
process the utterance that follows. The intent is specified by the phrase turn on, and the
slot is Wemo, which is the intent’s object. The intent and object are then transmitted to
an Amazon server, which has previously been configured to recognize the Wemo object
as well as various intents that could be applied to the object. If you try to apply an

intent that was not previously set up, the Alexa service will respond, “Sorry, I am not

sure” or “Sorry, I don’t know that one” or some similar response phrase indicating that

Alexa has no concept of the spoken intent.

Amazon has made available thousands of prebuilt skills for your immediate use. These
skills come mainly from original equipment manufacturers (OEMs) and service
providers that use Echo devices. The following is a list of the skills categories that I
extracted from https://www.amazon.com/alexa-skills/b?ie=UTF8&node=13727921011

website:

m Business and finance

m Communications

m Connected cars

m Education and reference
m Food and drink

m Games, trivia, and accessories
m Health and fitness

m Home services

m Kids

m Lifestyle

m Local

m Movies and TV

m Music and audio

m News

m Novelty and humor

m Productivity

m Shopping

m Smart home

m Social

m Sports

m Travel and transportation
m Utilities

m Weather

However, no prebuilt skill is available for the Raspberry Pi in any of these categories.
There is the Wemo skill provided by Belkin in the Smart Home category that I just
demonstrated, and a clever developer named Nathan Henrie modified it so that the skill
directly controls RasPi GPIO pins. He renamed the skill Fauxmo, which is a clever way
of stating that the skill is a false, or faux, version of the original Wemo skill. The skill is
directly downloadable from https://github.com/n8henrie/fauxmo/, where n8henrie is
Nathan’s user name on Github. However, do not directly download this skill from the

Github website because I will demonstrate an easier way to get it in the next section.

Fauxmo

I begin this section by stating that most of the instructions that follow came from an
April 2017 Instructables blog, “Control Raspberry Pi GPIO Using Amazon Echo
(Fauxmo),” written by Surendra Kane. I found the blog quite useful, although I did have
to slightly modify some of the procedures to suit my situation. You will also find if you
read the blog that Surendra actually modeled his blog after an earlier one dealing with
the same subject. This is what is so great about open-source development: the

tremendous support that is so readily available.

You first need to download a copy of the Fauxmo source code from Surendra’s Github

website using the following commands:

ad =
sudo git clone https://github.com/
kanesurendra/echo-pi.git

Next, move to the directory holding the Python script, and execute it with these

commands:

cd echo-pi
python gpio control.py

Now you can try asking your Echo device to discover any new devices by using this

spoken command: “Alexa, discover devices.”

The Echo device should provide a lengthy response starting with “Starting discovery.
This will take 45 seconds....”

I found that this approach did not discover the RasPi. I next tried using the Alexa app
on my smartphone and manually began a device discovery in the app’s Smart Home
devices section. This approach was successful, with 12 new devices labeled “gpio15”

through “gpio26” appearing in the app’s screen, as shown in Figure 4-4.

Alexa app with new GPIO devices.

I could now individually control the GPIO pins using the app or by speaking commands
such as “Alexa, turn on gpio 22” and “Alexa, turn off gpio 22.” The next step in the
demonstration involves connecting external peripherals to some GPIO pins for a proof

of performance, as was done in previous chapters.

Test Setup

The test peripherals consist of a LED and an AC lamp, which are controlled by a PST2.

Figure 4-5 is a Fritzing diagram showing how they are connected to the GPIO pins.

te PST22 (+)

fritzing

Test setup Fritzing diagram.

GPIO pin 22 controls the LED, and GPIO pin 24 controls a PST2, which, in turn,

controls an AC table lamp.

Test Run

These next spoken commands successfully controlled the LED:

“Alexa, turn on gpio 22.”

“Alexa, turn off gpio 22.”

Similarly, the following spoken commands successfully controlled the table lamp:

“Alexa, turn on gpio 24.”

“Alexa, turn off gpio 24.”

These commands are binary, meaning that the pin state is either on or off. This is
because that is the only intent setup for any specific GPIO pin. Attempting to give some
other action to a GPIO pin will only result in the usual “Sorry, I am not sure” or “Sorry,
I don’t know that one” Alexa responses. Figure 4-6 is a screenshot of the logger output

instantiated by the control script.

File Edit Tabs Help

L@raspberrypi:
aspberrypi:
:root:Listen

'@ 192.168.1.10 gpio port

024
) 192.168.1.10 gpio port:

Log screen for Fauxmo server and control script.

You can see at the beginning of the log screen all the Fauxmo virtual devices being
registered with attached port numbers. I will describe what these port numbers mean

in a later section. The last few lines of log output show where I controlled first the LED

attached to GPIO 22 and then the AC lamp (PST2), which is attached to GPIO 24. Note
that the phrases State True and State False refer to the requested control action of

“turn on” and “turn off,” respectively.

Python Control Script

I think that it is informative to present the Python control script and discuss how it
functions. Knowing more about it will likely allow you to further experiment and

develop solutions more tailored to your specific needs.

Author: Surendra Kane

Script to control individual Raspberry Pi GPIO's.

Applicable ONLY for Raspberry PI 3, based on schematics.

Please modify for other board versions to control correct GPIO's.

import fauxmo

import logging

import time

import RPi.GPIO as GPIO

from debounce_ handler import debounce handler
logging.basicConfig(level=logging.DEEUG)

GPIO.setmode (GPIO.BCM)
GPIO.setwarnings(False)

gpio ports = {'gpiol':1l, 'gpio2':2,'gpio3':3, 'gpiod’':4, 'gpio5':5, 'gpiob':6, 'gpio?':7,
"gpiog':8, 'gpied®':9, "gpiol0’':10, 'gpicll':1l, 'gpiol2’':12, 'gpicl3 ' :13, 'gpiold’':14,
'gpiolS5’':15, 'gpiclé’':16, 'gpiol7':17, 'gpiol8':18, 'gpiocl®':19, 'gpioc20':20, 'gpio2l':21,
'gpio22':22, 'gpio23':23, 'gpio24':24, 'gpio25':125, 'gpio26':26}

class device handler(debounce handler):
"""rriggers on/off based on GPIO 'device' selected.
Publishes the IP address of the Echo making the request.

W

TRIGGERS = {"gpiol":50001,
"gpio2":50002,
"gpio3":50003,
"gpiod4":50004,
"gpio5":50005,
"gpio6":50006,
"gpio7":50007,
"gpio8":50008,
"gpio9":50009,
"gpiol0":50010,
"gpioll":50011,
"gpiol2":50012,
"gpiol3":50013,
"gpiold":50014,

TRIGGERS = {"gpiol5":50015,

"gpiolé":50016,
"gpiol7":50017,
"gpiol8":50018,
"gpiol9":50019,
"gpio20":50020,
"gpio21":50021,
"gpio22":50022,
"gpio23":50023,
"gpio24":50024,
"gpio25":50025,

"gpioc26":50026}

def trigger(self,port,state):

print(’'port: %d , state: %s', port, state)

if state == True:
GPIO.setup(port, GPIO.OUT)
GPIO.output(port,GPIO.HIGH)

else:
GPIO.setup(port, GPIO.OUT)
GPIO.output(port,GPIO.LOW)

def act(self, client address, state, name):

print "State", state, "on ", name, "from client @", client_address,
"gpio port: ",gpio_ports[str(name))]
self.trigger(gpio ports[str(name)],state)

return True

" [

if _name__ == "__main__":
Startup the fauxmo server
fauxmo.DEBUG = True

p = fauxmo.poller()

u = fauxmo.upnp broadcast responder()
u.init_socket()

p.add(u)

Register the device callback as a fauxmo handler

d = device_handler()

for trig, port in d.TRIGGERS.items():
fauxme.fauxmo(trig, u, p, None, port, d)

Loop and poll for incoming Echo requests
logging.debug("Entering fauxme pelling loop”)
while True:
try:
Allow time for a ctrl-c to stop the process
p.poll(100)
time.sleep(0.1)
exXcept Exception, e:
legging.critical("Critical exception: " + str(e))
break

The first thing you should notice is that this version of the script has activated only
GPIO pins 15 through 26 as part of a TRIGGER array. I did read in the Fauxmo
documentation that problems were encountered when too many GPIO pins were
activated at a single time. This script allows you to activate GPIO pins 1 through 14 or 15
through 26 at any given time. You do that by uncommenting the desired TRIGGER

array. Just ensure that the unwanted portion of the GPIO pins is also commented out.

Each GPIO pin has a unique port number that is assigned values contained in the active
TRIGGER array. That port number, not the actual GPIO pin number, is what is sent to

the Fauxmo server.

The Fauxmo server is the key software component that makes this whole project viable.
A brief discussion regarding the Fauxmo server along with the underlying software
communications protocol follows. You may skip reading the next section without any

loss of continuity.

Fauxmo Server

I will like to first give credit to Chris, who publishes the Maker Musings blog.
Apparently Chris is the open-source developer who created Fauxmo. The blog I am
referencing is entitled, “Amazon Echo and Home Automation,” and was published on

July 13, 2015.

The Alexa service has had a Wemo skill for a relatively long time as compared with
more recent HA skills. This skill was based on a WiFi-enabled AC mains power switch
such as the one shown in Figure 4-1. Wemo devices use the UPnP communications
protocol to “advertise” their availability in a local network. The UPnP Protocol is
formally known as Universal Plug and Play and was created to allow network devices
to seamlessly interconnect with one another. These devices ordinarily include such
things as PCs, printers, Internet gateways, WiFi access points, routers, and mobile
devices. Additionally, the UPnP Protocol allows for the easy sharing of data among
connected devices. UPnP uses the Internet Protocol (IP) as its backbone and also takes
advantage of HTTP, SOAP, and XML technologies. Generally speaking, UPnP is best
suited for consumer applications such as HA and is often avoided for use in business
systems. This is because the protocol uses multicasting, which makes it “too chatty” for

deployment in business or enterprise systems.

Figure 4-7 is a sequence diagram depicting how an Echo device communicates with a
Wemo device using UPnP. I have found these diagrams to be very useful in explaining

complex data communications configurations and interconnections.

User Amazon Echo Wemo Switch

b —
‘Alexa, discover devices! UPRP ritilL E5et Svsr DD o
Search for Belkin devices 7| Echo starts search for Wemo devices.
w HTTP over UDP W ASRESURE
o http://<ip>:49153/setup.xml EHIGTSSPORASIVINAILS ’
HTTP over TCP ~) o
GET/setupxml 7| Echo requests device description.
HTTP response
< = Wemo returns device description.
.))) —
“Alexa, turn on the den light!” |HTTP with SOAP over TCP R .
POST/upnp/control/basicevent] 7| Echo send SetBinaryState command.
i HTTP SOAP response
< Wemo returns confirmtion.
<
"OK‘H

Echo/Wemo sequence diagram.

Don’t be scared if you find this figure a bit intimidating. It is basically just a timeline
showing requests and responses between the Echo and Wemo units. The thing you
should note that the same interaction is always happening between the units. I will
shortly show you a figure with some actual data illustrating these requests/responses
happening in real time between an Echo device and a RasPi. But first I want to continue

with the Fauxmo story.

The Fauxmo software is an emulation of the original Wemo server software. The
devices controlled in this emulation are known as virtual Wemo devices because they
will respond as if they were physical Wemo devices but are something completely
different, such as RasPi GPIO pins.

I am not going to discuss the complex functions of the Fauxmo server software other

than to list them as they were provided in Chris’s blog:

1. An IP address for each virtual switch

2. Alistener for UDP broadcasts to address 239.255.255.250 on port 1900
3. Alistener on port 49153 for each switch on its associated IP address

4. Logic to customize the search response and the setup.xml to conform to the UPnP

Protocol and give the Echo the right information about each switch

5. Logic to respond to the on and off commands sent by the Echo and tie them to

whatever action I really want to perform

Please read the blog if you want to delve deeper into the implementation details. The
blog discussion is quite extensive and detailed, and many informative comments are

also included with the discussion.

Surendra’s control script imports the Fauxmo server package and sets up a polling
service that constantly monitors the local network for any service requests emanating
from a virtual Wemo device. The Python control script may be thought of as a wrapper
to the Fauxmo software such that RasPi GPIO pins can be configured as virtual Wemo

devices. Using this approach makes it quite easy to extend to other devices as desired.

CREATING AN ALEXA SKILL FROM SCRATCH

Up to this point in this chapter’s discussions, I have relied on using an existing skill
created by Belkin to communicate with Belkin-manufactured Wemo devices. This
works and is quite useful to quickly implement a scheme to control GPIO pins on a
RasPi. However, it would also be very useful to know how to design your own skill in
case you want to communicate with a device that cannot emulate Wemo functionalities.
This is why I will provide a detailed discussion on how to design and build an Alexa
skill. This learning skill will involve a RasPi but not any GPIO pins. The skill itself is
centered on the design of a simple memory game. The important point to note is that
the skill-development process will be the same when designing for an HA application as

it would be for implementing a simple game.

Memory Game Skill

The memory game skill I will be describing was created by John Wheeler, who also
created the Flask-ASK package, which is a Flask extension that facilitates designing
voice interfaces with the ASK. The memory game is a very simple application in which
the Alexa asks you to repeat in reverse order three numbers that it spoke earlier. The
application is implemented using Python script and runs on a RasPi. It uses the Flask
package, which is a microframework written in Python that essentially supports Web-
based applications. In fact, it is the most popular Python Web-development framework
among open-source developers. I do not have the space in this book to delve into Flask
but will state that many Internet tutorials are available, as well as several books

completely devoted to Flask development.

You will first need to install the Flask-ASK package on the RasPi. As a gentle reminder,
ensure that the RasPi OS has been updated and upgraded, as I have discussed
previously in the book. Enter the following command to install Flask-ASK:

sudo pip install flask-ask

This command will take about a minute or so using a RasPi 3 (likely longer with a
Model 2). After the package has been installed, open a nano editor and enter the
following Python script. It is named memory_game.py and is also available for
download from this book’s website,

www.mhprofessional.com/NorrisHomeAutomation.

import logging

from random import randint

from flask import Flask, render template

from flask_ask import Ask, statement, question, session

app = Flask(name)

ask = Ask(app, "/")

logging.getLogger("flask_ask").setLevel(logging.DEBUG)
@ask.launch

def new game():
welcome msg = render template('welcome')
return question(welcome msg)

@ask.intent ("YesIntent")

def next round():
numbers = [randint(0, 9) for _ in range(3)]
round msg = render template('round', numbers=numbers)
session.attributes| 'numbers'] = numbers[::-1] # reverse
return gquestion(round msqg)

@ask.intent("AnswerIntent", convert={'first': int, 'second': int, 'third': int})

def answer (first, second, third):
winning numbers = session.attributes[' numbers']
if [first, second, third] == winning numbers:
msg = render_template('win')
else:
msg = render template('lose')
return statement(msg)

if _name__ == '_main__ ':
app.run(debug=True

Flask-ASK also permits the separation of executable code from speech using templates.
Therefore, you will need to start another nano editor session and enter the following
speech responses into a file named templates.yaml. It, too, is available from this book’s

website.

welcome: Welcome to memory game. I'm going
to say three numbers for you to repeat
backwards. Ready?

round: Can you repeat the numbers
{{ numbers|join[", ") }} backwards?

win: Good job!

lose: Sorry, that's the wrong answer.

The templates.yaml file must be located in the same directory as the memory_game.py

script. I will assume that you will likely put them both in the Home directory.

If you run the script at this point, you will see that it starts a server on
http://127.0.0.1:5000, which is the local host at port 5000. Unfortunately, the Alexa
service has no way to directly access the local host, and the application cannot run
successfully. Fortunately, there is a unique and clever answer to this problem, and its

name is ngrok.

ngrok

ngrok is a utility that will open a secure tunnel to the local host, allowing the Alexa
service to communicate directly with the RasPi. A secure tunnel is just an https URL

that points to the internal Web server set up by Flask. There is no public host name,

and you do not need to open any firewall protections. It is exactly what is needed for the

skills deployment on a RasPi.

You will need to install ngrok, which is done by going to the website ngrok.com and
following the simple set of instructions posted there. You can execute ngrok once it is

installed by entering the following command:
./ngrok http 5000

You should see a screen similar to the one shown in Figure 4-8 after you execute the

command.

File Edit Tabs Help

ngrok status screen.

The key bit of information that you eventually need is the https URL. The one shown in
the figure is https://11941605.ngok.io and is also called an endpoint. Yours will be
different. In fact, whatever URL is shown will not be used in the actual connection until
you are ready to run the game. The URL created changes each time you start ngrok, and
that particular URL must be the one entered into the skill prior to use. The next section

discusses how to configure the Memory Game skill.

Building and Configuring the Memory Game Skill

You will need to log onto your Amazon developer account to start the process of

building an Alexa skill. Go to https://developer.amazon.com, and either login or create
a new account by clicking on the appropriate button. It is fast, free, and absolutely
required to proceed with this project. Once logged in, go to your list of Amazon skills.
Of course, it will be empty if this is the first skill you are creating. The following steps
must be closely followed in the order presented or you will likely not be successful in
creating the skill.

1. Click on the Create Skill button. The screen shown in Figure 4-9 should appear.

Custom Smart Home Music

Video

Initial screen for skill creation.
2. Leave the Skill Type set on the Custom Interaction Model.

3. Enter “Memory Game” (without quotes) for both the Name and Invocation Name

textboxes.

4. Copy the JSON file shown into the JSON editor window. There will already be four
standard, prebuilt intents in the Editor window. The listed file includes these, so you
can replace the entire existing Editor window contents with this file. This file is also
available on this book’s website, www.mhprofessional.com/NorrisHomeAutomation,

with the name memory_game.json.

{

"interactionModel": {
"languageModel": {
"invocationName": "memory game",
"intents": [

"name": "YesIntent",
relotsw [1;
mn Samples" . [

"Y'ES n
]
"name" : "AnswerIntent",
EelEEETe |

{

"name": "first",
"type": "AMAZON.NUMBER"

b
{
"name": "second",
"type": "AMAZON.NUMBER"
b
{
"name": "third",
"type": "AMAZON.NUMBER"
}

|
usamplesu: [
"{first} {second} {third}"

"name": "AMAZON.FallbackIntent",
"samples": []

"name": "AMAZON.CancellIntent",
"samples": []

"name": "AMAZON.HelpIntent",
"samples": []

{
"name": "AMAZON.StopIntent®,
"samples": []
}
I
"types”: []

5. Copy the following utterances into the Sample Utterances field:

YesIntent vyes
YesIntent sure

AnswerIntent {first} {second} {third}
AnswerIntent {first} {second} and {third}

6. Next, run the ngrok utility and copy the https URL into the Endpoint field. Do not
close the ngrok utility because the Alexa skill must use the URL Endpoint just

generated.

7. Select the second radio button in the SSL Certificate settings. It states, “My
development endpoint is a subdomain of a domain that has a wildcard certificate from

a certificate authority.”

8. Finally, you must build the interaction model by clicking on the Build button in the

Alexa Skill console website. This will take a bit of time, so be patient.

The skill is ready for testing once it has been built and saved.

Test Run

Open another terminal window, and enter this command:
sudo python memory game.py

This will start the Python script that was loaded earlier with a Web server running as
local host at port 5000. However, the ngrok utility is still running and will have

established a virtual tunnel between the Alexa service and the local host Web server.

This is why it is so important to enter the current https URL created when you started
the ngrok utility. Figure 4-10 shows a ngrok screen as it was running with a Memory

Game session.

File Edit Tabs Help

ngrok session in progress.

Now speak the following command to the Echo device: “Alexa, start the memory game.”
If all goes well, the response, should be “Welcome to the memory game. I'm going to
say three numbers for you to repeat backwards. Ready?” Your response should be

“Yes‘”

Alexa will then state three random numbers each between 0 and 9. You should repeat
them back in reverse order. If you are successful, Alexa will respond, “Good job!” If
unsuccessful, the response is “Sorry, that’s the wrong answer.” You may always change
the Alexa responses by modifying the templates.yaml file (which contains the

utterances).

There is an incredible amount of data flowing between the Alexa service and the RasPi,

which you can see captured in the communications log shown in Figure 4-11.

File Edit Tabs Help

pif@raspl

Communications log between the Alexa service and the RasPi.

Much of the incomprehensible text I believe is related to establishing and maintaining a
secure tunnel between the Alexa service and the RasPi’s local host Web server. In any
case, if you do not see this data flow, then it likely means that a secure tunnel has not

been created, and the Memory Game cannot work.

You deserve congratulations if you have successfully completed this demonstration.
Creating an Alexa skill is moderately difficult, especially one that is implemented using
a RasPi. The next demonstration takes the preceding demonstration one step further,

where you will create a skill that will control any RasPi GPIO pin.

BUILDING AND CONFIGURING THE RASPI GPIO PIN
CONTROL SKILL

In this demonstration, you will be building a skill that will be able to turn on or off any
RasPi GPIO pin. For convenience, I will be using the exact same physical setup shown
in Figure 4-5, where GPIO pin 22 controlled a LED and GPIO pin 24 controlled an AC
lamp using a PST2. However, the skill is equally applicable to any available GPIO pin.

Python Control Script

Open a nano editor, and enter the following Python script. It is named gpio_control.py

and is also available for download from this book’s website.

from flask import Flask

from flask_ask import Ask, statement, convert errors
import RPi.GPIO as GPIO

import logging

GPIO.setmode (GPIO.BCM)

Flask(__ _name_)
Ask(app, '/'")

app
ask

logging.getLogger("flask ask").setLevel(logging.DEBUG)

@ask.intent('GPIOControlIntent', mapping={'status': 'status', 'pin': 'pin'})
def gpio_control(status, pin):

try:
pinNum = int(pin)
except Exception as e:

return statement('Pin number not wvalid.')
GPIO.setup(pinNum, GPIO.OUT)

if status in ['on', 'high']: GPIO.output (pinNum, GPIO.HIGH)
if status in ['of', 'low']: GPIO.output(pinNum, GPIO.LOW)

return statement('Turning pin {} {}'.format(pin, status))

if name == ' main__':
main()

Building the Alexa Skill

The same procedure detailed in the preceding Alexa skill-development discussion must

be followed. I will not repeat all the steps except to detail the changes and modifications

necessary for this particular skill build.

You need to name the skill after you click on the Create Skill button. I used the name

Raspberry Pi Control, but you can name it anything you like.

The next item is to enter an invocation phrase. I used the phrase pin control because I
felt that it would be natural and easy to say the phrase “Alexa, turn on pin control 22” to
turn on GPIO pin 22.

Copy the JSON file shown into the JSON editor window. There will already be four
standard prebuilt intents in the editor window. The listed file includes these, so you can
replace the entire existing editor window contents with this file. This file is also

available on this book’s website with the name raspicontrolintent.json.

"interactionModel": {
"languageModel": {
"invocationName"
"intents": [
{
"name" :
"slots":
{
b
{
}
¥,
"samples
" ofF"
TI—
]
Yo
1
"name" :
"samples
by
{
"name" :
"samples
}o
{
"name" :
"samples

b

= "cenirol pin";

"GPIOControlIntent",
[

"name": "status",
"type": "GPID_CDNTRDL"
"Ha_[ne": 1lpinl1r

"type": "AMAZON.NUMBER"

1I= [

r

"AMAZON.FallbackIntent",
[]

"AMAZON.CancelIntent",
[1]

"AMAZON.HelpIntent"”,
[]

n
-

"name": "AMAZON.StopIntent",
"samples": []

1,
tEypesty |
{
"name": "GPIO CONTROL",
"values": |
{
"name": {
"value": "off"
b
}o
{
"name": {
"valuely “on
}
}
]
}
]

At this point, you can save the skill and build it to check that it is viable, but you cannot
deploy it until you set the Endpoint URL, as noted earlier.

Run ngrok, get the https URL, and enter it into the skill’s Endpoint textbox. Also,

ensure that you preset the proper SSL certificate, as discussed earlier. Now save and
rebuild.

Test Run

The test run for this demonstration is run in exactly the same manner as the previous

demonstration. Ensure that ngrok is still running, and then open another terminal

window and run the Python control script using this command:
sudo python gpio control.py

At this point, speak the following phrase: “Alexa, turn on pin control 22.” You should
now see the LED light up and hear the Alexa response: “Turning pin 22 on.” Similarly,

you can turn off the LED and turn the AC lamp on and off with the appropriate phrases.

This last demonstration should convince you that it is entirely possible to create an
Alexa skill to control RasPi GPIO pins. I will say that having to set a URL prior to using
the skill is a severe limitation that probably would exclude this approach for
commercial HA applications. By contrast, using the Fauxmo approach, as was done in
this chapter’s second demonstration, is likely acceptable for a commercial HA

application or your own efficient project.

NOTE: Chapter 5 was intended to be about how to build an Echo using only the RasPi
in much the same way I wrote this chapter for the Google Home device. Unfortunately,
after much development and trial and error, I was unable to build such a device. I do
not know what to attribute the failure to except think that the Alexa voice service does
not seem to be as accepting of open-source development as is Google’s voice service.

Hopefully, this will change in the future because voice services are very dynamic.

SUMMARY

The chapter began with a demonstration of how to control a Wemo miniplug HA device
using a smartphone app. I did this in preparation for introducing how the Amazon
Alexa service functions and how to build a skill that could connect that service with a
RasPi.

A short discussion regarding the Fauxmo server software followed. This software is an
emulation of the Wemo software, which allows a RasPi to act as if it were a Wemo
device. I provided a demonstration in which a LED and an AC lamp connected via a

PST2 were controlled by the RasPi using spoken commands to an Echo device.

The ngrok utility was introduced, which makes possible the creation of a secure tunnel
between the Alexa service and the RasPi Web server that is running as a local host. This

utility was required for the follow-on demonstration.

A detailed discussion of how to create an Alexa skill from scratch followed. This skill
involved building a simple Memory Game that was hosted on a RasPi. A user would

start a conversation with an Echo device to run the game. This demonstration detailed

all the necessary steps to build an Alexa skill.

Finally, another skill was built that directly controlled RasPi GPIO pins, which in truth
controlled both the LED and AC lamp.

Home Automation Operating Systems

THIS CHAPTER EXPLORES the subject of home automation operating systems (HA
OSs). It probably seems strange to you to even know that there is such a thing as an HA
OS. Most readers are aware of a computer OS, such as Windows 10 for PCs, OSX for
Macs, and Linux for the open-source community. The most common and popular OS
for the RasPi is Raspbian, which is a distribution within the Debian Linux family. It
would be helpful to describe what a computer OS does before attempting to describe

the purpose and function of an HA OS.

COMPUTER OPERATING SYSTEMS

The Wikipedia definition of an OS system is as follows:

An operating system (OS) is system software that manages computer hardware and

software resources and provides common services for computer programs.

This definition is fairly accurate and is quite similar to those found in computer OS
textbooks. I believe that the single most important item to know about an OS is that in
itself it is just a program. Admittedly, it is a very large and complex program, but it is
nonetheless just a program or, more specifically, a systems-level application. The OS
loads automatically when the computer is powered on and eventually displays a
friendly graphical user interface (GUI), which allows the user to easily control the
whole system. It would be impossible for the average user to interact with a modern
computer system without an OS functioning between the user and the hardware and

software.

Parts List

Item Model Quantity Source

RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com

Smart plug Belkin Wemo miniplug 1 amazon.com
Smart lamp kit (includes bridge) | Philips Hue, white 1 amazon.com
Power Switch Tail Il 1 amazon.com

I am not going to delve into any OS specifics here because it is really not necessary for
this section, and besides, it ordinarily requires taking a one-semester college course to
gain a good understanding of how a modern OS functions. The key point to understand
about an OS is that it abstracts computer hardware and software to a point where
relatively unsophisticated users can easily use a computer system to achieve their goals
and objectives. These goals can be as simple as sending and receiving e-mail, using
business applications, participating in social networks, and browsing the Internet.
Likely 80 to 90 percent of all users match this description. The remaining portion of
users is more knowledgeable and can develop applications as well as customize a

computer system to meet their specific needs.

A modern OS has a lot of “moving parts” that are necessary for it to meet its goal of
controlling a computer system based solely on mouse clicks on icons and small
amounts of text input into browsers or dialog textboxes. This approach refers to the
abstraction I mentioned earlier. Modern systems would be totally beyond most people’s
skills and patience without this abstraction layer present. It is not an understatement to
say that the OS is responsible for today’s computer revolution. Having an HA OS is

similarly important for establishing and maintaining an HA revolution.

HOME AUTOMATION OPERATING SYSTEMS

HA software is generally considered to be any type of software that is dedicated to
controlling, configuring, or otherwise automating existing items and systems located in
modern homes. These items and systems usually include large appliances such as
stoves and refrigerators as well as small appliances such as coffee makers, media, and
toasters. Home systems often include heating, ventilation, and air-conditioning
(HVAC), irrigation, and lighting systems. The tasks implemented in software normally
include on/off and timed operations and notifying users when events happen. These
events are usually triggered by sensors detecting an abnormal situation such as an
unauthorized person in the home or a rapid ambient temperature change, which may

be a precursor to an imminent fire.

HA software is often designed to work with multiple interfaces to the external

environment, including relay closures, e-mail portals, and Extensible Messaging and
Presence Protocol (XMPP), Z-Wave Protocol, and X10 Protocol products. The software
structure is often a client-server architecture using a Web-based GUI or a mobile
smartphone app. The ability to automate tasks is also built in using custom scripts and

similar configuration files and utilities.

Huge concerns for HA device manufacturers and consumers are privacy and security.
No one wants cyber intruders to enter private homes and business establishments.
Determining who has access to vital systems that control home and business systems,
which often record every moment and movement of users’ lives, is of paramount
importance. Users need strong assurances that automated devices are only
communicating as designed and permitted and are never communicating or disclosing

private information or data to unauthorized persons or organizations.

These security concerns are ample reason to use open-source solutions for HA
applications. Understanding how an HA program functions is critical to ensuring that it
is secure and will not expose you to all the threats that are ever-present whenever you
are connected to the Internet. Unfortunately, some of the HA programs used with
modern appliances and systems are proprietary and offer little to no understanding of

how they are secured and how they can protect you from cyber threats.

The solution to this issue is to use an open-source protection layer in the form of a hub
that ties all your devices together and provides a common user interface. This hub also
should be designed for both security and ease of use and should be easy to customize to
meet specific installations and requirements. This open-source hub is what I refer to as

an HA OS, and many choices are currently available that will interoperate with a RasPi.

Open-Source HA OS Solutions

The following is a list of the most popular HA OS solutions currently available at the
time of this writing. Of course, this is a very dynamic and fluid technology, and I am
sure that some of these solutions will have disappeared by the time you read this. By
contrast, new solutions will have also become available, so it will ultimately be up to
you to research what is available and choose the solution that best fits your needs and

objectives.

The following HA OS solutions are presented in alphabetical order, which means that

you should impute no priority or preference based on their order in the list.

Calaos

This is a full-stack HA platform, which includes a server, touchscreen interface, Web
interface, and mobile applications supporting both iOS and Android. It runs on a Linux
platform. Calaos originated in France, so much of the support forums are in French, but

the tutorials and supporting documentation have been translated into English.

This HA OS is licensed under GPL, version 3, and its source code is available from
GitHub.

Domoticz

This HA system supports a wide range of devices, including uncommon devices such as
weather stations and smoke detectors. Domoticz easily incorporates new
communication protocols, which allows it to quickly integrate new devices into its hub.
This capability is referred to as a third-party plug-in and is explained in great detail on
the Domoticz website (www.domoticz.com). It uses HTMLj5 to implement its front-end,
which makes it easily accessible using browsers and smartphone apps. It is of a

lightweight design (meaning small memory footprint) and can be hosted on a RasPi.

It is written in C/C++ and is licensed under GPL, version 3. The source code is available
from GitHub.

EventGhost

This is more like a utility program than a full-fledged HA OS. It is a home theater
automation tool that is supported only on Microsoft Windows PCs. It allows users to
control media PCs and attached hardware by using plug-ins that, in turn, trigger

macros. Custom Python scripts also may be written to control the PC.

This HA OS is licensed under GPL, version 2, and its source code is available from
GitHub.

Home Assistant

This HA OS is written in Python 3 and can run on any Linux platform that supports
that language, including the RasPi. It also uses a Docker container for rapid and
trouble-free deployment. This software easily integrates with IFTTT (If This, Then
That) and Amazon services, providing for seamless interoperability with many devices.

I will be introducing a practical demonstration of Home Assistant in this chapter.

Home Assistant is released to the public under the MIT license, and the source code is
available from GitHub.

ioBroker

This is a JavaScript-based framework that can control lights, locks, thermostats, media,
webcams, and much more. It will run on any platform that runs Node.js, which

normally includes Windows, Linux, and macOS platforms.

ioBroker is released to the public under the MIT license, and the source code is
available from GitHub.

Jeedom

This is a French-based open-source HA platform that controls lights, locks, media, and
much more. It includes mobile apps for both Android and iOS. It operates on Linux
PCs, which include the RasPi. The commercial company behind Jeedom also sells

hardware hubs that provide ready-to-use solutions for setting up HA.

This HA OS is licensed under GPL, version 2, and its source code is available from
GitHub.

LinuxMCE

This software is a media-based OS that runs on Linux and claims to interconnect all
your home’s media devices as well as HVAC, security, and telecommunications devices.
It also claims to have the ability to run video games, which I suggest is problematic for a

true HA OS—designed application.

It is released under the Pluto open-source license.

MisterHouse

This software uses Perl scripts, which enables it to run on all platforms, including
Windows PCs, Macs, and Linux machines. It is voice and speech enabled and can
provide many responses such as the current time and weather, warn of open doors and

windows, announce phone calls, inform you if your child has been speeding, and so on.

openHab

The name openHab is short for Open Home Automation Bus and is probably the best
known HA OS open-source software package used by HA developers and enthusiasts.
This software is written in Java and will run on all popular OSs as well as on the RasPi.
It supports hundreds of devices and is well suited to be adapted and modified to
function with new devices because it is written in Java. openHab also supports device

control using both iOS and Android apps. The openHab website

(www.openhab.org/docs/concepts/) contains a very comprehensive introduction to the
whole HA concept. I recommend that you take the time to read it. It will provide you

with an excellent background in HA, well beyond what I can accomplish in this chapter.

This HA OS is licensed under the Eclipse public license, and its source code is available
from GitHub.

OpenNetHome

This software will control lights, security devices, appliances, and so on. It’s based on
Java and Apache Maven and will operate on Windows, macOS, and Linux platforms

including the RasPi.

This HA OS is licensed under GPL, version 3, and its source code is available from
GitHub.

OpenMotics

This software is a bit different from other HA OSs described because it focuses mainly
on individual device control and much less on the interoperability between devices. As
such, it is hard to build a comprehensive HA OS using it, but it does have its place in

providing a framework for device interfaces.

This HA OS is licensed under GPL, version 2, and its source code is available from
GitHub.

Smarthomatic

This HA OS is an open-source framework that focuses on hardware devices and
interface software rather than user interfaces. It is used for such things as controlling
lights, appliances, and HVAC systems. It can measure ambient temperature and water

house plants, provided that proper sensors and water systems are employed.

This HA OS is licensed under GPL, version 3, and its source code is available from
GitHub.

Hass.io

Hass.io is a specialized HA OS that was created solely to ease the installation,
configuration, and updating of the Home Assistant HA OS. You may properly consider
it as a wrapper application for the Home Assistant because its purpose is to make the
experience using Home Assistant as painless as possible while adding some new

capabilities to the “wrapped” HA OS. These additional capabilities come in the form of

plug-ins, which extend Home Assistant to use both Google Assistant and Let’s Encrypt,
as well as some other applications discussed later. Hass.io also allows the user to take
Home Assistant configuration snapshots, which will allow for rapid and seamless

restoration of an existing configuration.

Hass.io has been ported to run on the RasPi and is a great addition to support the
Home Assistant HA OS, which can also be installed on the RasPi. A developer named
Pascal Vizeli created Hass.io based on the ResinOS and Docker framework. This
wrapper OS is configured using the Home Assistant user interface (UI). However, a
Hass.io dashboard Ul is also available, as shown in Figure 5-1, that will allow you to

install add-ons to extend the Home Assistant capabilities.

Hass.io

Update Available! &

You are currently running Home Assistant version 0.48 and 0.48.1 is available.

UPDATE
Installed Add-ons
Mosquitto broker 0.8
An Open Source MQTT broker ‘
Samba share 10

Expose HasslO folders with Samba

Hass.io dashboard.

The two add-ons shown in the figure are Mosquito broker and Samba share. The first
one easily integrates with Google Assistant, whereas the second add-on makes the
Home Assistant configuration accessible on a local network using the Samba/Windows

application.

Other available add-ons that were not mentioned previously include

m Duck DNS

m Homebridge

m InfluxDB

m HASS Configurator
m AppDaemon

Hass.io is open source and released under the Apache 2.0 license. Hass.io is and will

always be optional. You can still run Home Assistant wherever you can run Python.

Proprietary and Closed-Source Hardware/Software

For the sake of completeness, I have presented the following tables to show some of the
proprietary and closed-source HA hardware/software solutions that are currently

available. These will change, as is the case with the open-source solutions.

Proprietary Hardware

Table 5-1 details some of the more popular proprietary HA solutions. Listed in the table

in most cases is the software that supports the manufacturers’ devices.

Table 5-1 Proprietary Hardware

Configuration

Name Utilities Remarks
AMX LLC Netlinx Studio, | Windows only
TP Design
Control4 Composer Uses a Linux kernel:

configuration

tools only work on
Windows; platform
also supports open
hardware using the
Z-Wave standard

Insteon Insteon hub, Lighting,
Insteon for appliances, sensors;
Windows maobile apps for

Android and iOS;
configuration tools

only work with
Windows

Lutron - Focused on lighting
and shades;
configuration

tools only work on
Windows

SmartThings | — Lighting,
appliances, sensors;
mobile apps for
Android and iOS

Vivint - Sensors and one-
touch hardware for
security

Closed-Source Software

Table 5-2 details two closed-source HA solutions. The applicable computer platforms

are also shown.

Table 5-2 Closed-Source HA Software Solutions

Name Windows | macOS Linux Android |iOS License Remarks
Microsoft HomeQS | x Academic
HomeSeer X X X X X Bluetooth, 1-Wire,

Z-Wave, X10, UPB,
Insteon, Infrared

INSTALLING THE HOME ASSISTANT HA OS

I elected to demonstrate the Home Assistant HA OS because it is one of the most
popular HA software packages, and its installation and configuration are very easy
using the Hass.io software package introduced earlier. The only prerequisite for the
installation is to use a RasPi 3, Model B, and not the recently introduced Model B+. I
am not quite sure why it is mentioned in the installation other than there hadn’t been
sufficient time to try it in the installation process. That restriction may very well be
removed by the time this book is published. In any case, just go to the website
(https://home-assistant.io/getting-started) and carefully follow the eight steps
described to install the Home Assistant software package. You will need a fresh 16- or
32-GB micro SD card as part of the installation. Ensure that it is a class 10 card to

minimize the time it takes to write a new image onto the card.

There is a step in the installation process that will require you to edit an existing file on
the micro SD card containing WiFi configuration details. This step is required to be
accomplished before you insert the card into the RasPi. The edit is needed because the
Hass.io automated installation procedure will automatically start to download the
“real” Home Assistant software on the initial RasPi boot and will fail if there is no
Internet connectivity. Of course, you can skip the edit step if you use a wired Ethernet

connection.

The initial RasPi boot will take approximately 20 minutes, and an HA type icon will
appear on the monitor screen for a few minutes. However, the icon will disappear, and
there will be no indication of a successful installation. The monitor screen will be blank!
Don’t despair; the installation has likely been successful. You must now use a browser
on another computer connected to your local network and go to this site:

http://hassio.local:8123/. You should see something similar to what is shown in Figure

5-2.

Mew Devices Discovered
W Burve discoraarnd Fetwy deirebins O yoa repbweor. CRpck (1 ol

DISMISE

Welcome Home!

Hedg ang 220 RS0 CEd 10 Ged Slaned

Tis ma3 g thish 2and popud in the futute, &8t your conlig in
coaligquratics.yanl and diasble the introduct ion Comporsnl

DISMISS

Rigdos 4E 7 357 1006

Idbe
Coty Siroll: Mavee Magic

Light
§ Huewhitelamp 1 []
'! Lirvieey roam =

Initial Home Assistant welcome screen.

You likely noticed in the figure that the HA OS already discovered that I had a Philips
Hue smart lamp connected as well as a Roku streaming device connected to my smart
flat-panel TV. In fact, a show started appearing on the TV when I clicked on the Play
button. Completing the smart lamp connection required only that I press a button on a
Philips Hue bridge device. After that, I had full control of the smart light bulb, as you

can see in Figure 5-3.

X Hue white lamp 1 o

Hue white lamp 1 .
= 0 seconds ago

Unavailable on

8:00 PM 11:00 PM

Brightness

O —eo

Smart light control.

The first thing you should do after connecting to the Home Assistant page is to add a

password by editing the configuration file. Follow these steps to accomplish this task:

1. Open Home Assistant by going to http://hassio.local:8123/ using a browser on a

computer connected to the home network.

2. Click on the Menu icon located in the top left-hand corner, and select Hass.io in the

sidebar, which will appear.
3. Select the ADD-ON Store, which will appear in the Hass.io panel.

4. Install the HASS Configurator from the list of add-ons that appears in the store
listing. You will be able to edit your Home Assistant configuration using a Web
interface with the HASS Configurator.

5. Next, go to the Add-On Details page for the configurator, where you will be able to
change settings, as well as start and stop the add-on. Follow the steps in the Details

page to set up the add-on.

6. Set a password in the Config box, and don’t forget to use quotes surrounding your
password. The following listing is representative of what the initial configuration file
will look like.

"username": "admin",
"password": "YOUR PASSWORD WITH QUOTES",
"certfile": "fullchain.pem",
"keyfile": “privkey.pem",
"egl": false,
"allowed networks": [

g 1 1T s R 7 R

i 7 2B o 0 T
L
"banned_ips": [

"8.8.8.8"
1.
hanlimit s 0;
"ignore_pattern”: [

" _ pycache
I
"dirsfirst": false,
"enforce basepath": false

7. Click on SAVE to save your new password.
8. Next, click on START at the top of the Configurator add-on panel.

9. You will now be able to click the OPEN WEB UI link to open the Web Ul in a new

window.

10. Type your username and password that you recently created in the dialog box, as
shown in Figure 5-4. A Web-based editor should now appear, as shown in Figure 5-5.
You can modify the Home Assistant configuration using this editor. Do not close this
Web page because in the next section I discuss how to make some modifications to the
Home Assistant HA OS using the Web editor.

Sign in
http:/fhassio.local:3218
Your connection to this site Is not private

Username | |
Password | |
et | NN
Login dialog box.
= A V)
Select trigger platform v

o

Configurator Web-based editor window.

Modifying the Home Assistant Using the Configurator

The first configuration task I will demonstrate is how to add a new icon into the Home
Assistant sidebar, which when clicked will start the Configurator. The following code

must be entered into the configuration.yaml file in order to add the new icon:

panel frame:
configurator:
title: 'Configurator’
icon: mdi:wrench
url: 'http://hassio.local:8123"'

Click on the Browse Folder icon in the upper left-hand corner of the Web editor to open
a list of Home Assistant files that can be edited. Select the configuration.yamdl file, as

shown in Figure 5-6.

B B L]

[

Lo

-t'-:tud

. i

- HA WERSION

k0 P Y i A

HIFaGE

i e

s

St yaml

S i A e S

oonfiguation yaml

| = seleck this file

uttemine yarml

o i Y e

s

enlity_regitey yaml

. R B G s

groups yami

Born-antisten log

. B i R e

Bome-assisten v2.db

Selection of the configuration.yaml file.

Enter the listing at the end of the file, playing particular attention to the indentations in
the listing. Save the newly edited file, and exit the Configurator. The Home Assistant
must now be rebooted for the new configuration to take effect. I found that I had to
power cycle the RasPi to reboot the system. Trying to reboot the RasPi over the Web
was ineffective and a wasted effort. You should wait several minutes before attempting

to log back into the Home Assistant.

Figure 5-7 shows the new welcome screen after a successful reboot. You can clearly see

the new Configurator “wrench” icon in the sidebar, which was not present prior to the

preceding configuration file edit.

B 08 [s Assise ® T 8
———— i —

+ O D rs ke B2 e w RORY @
HE Apps o Bosiwares T Use Google Assians . B Maspitery PPN S [Joaper | Document . 8% Prots OS for R [107 Proes P guisse

Home Assistan! < Home 4
ey
- O&
B e i
= Leghek Welcome Home!
[Histeay Fhere 0 SO FRCUEeN 19 ot §5adted
B, Confprator
% Hasalo
T il it i €900 popu 1 the future: o yinel ofig i
o Condrparation configuration.yanl sod disable e introduct Lon component
eSS
3] Logem
Dvabopar ot Light
i o ® B © B e white lsmp 7 »
Lhingeoom »
® wedglies »

Roku SETHET100697

Idle
ity Sreoll: Mol Magh

« @~

New Home Assistant welcome screen.

Editing the Configuration Using Samba

It is also possible to avoid using the Configurator Web-based editor by installing the
Samba add-on. Samba is a Windows application that allows Linux/Unix programs to
interoperate with a Windows OS over a network. It is installed in the Home Assistant in
the same manner that the Configurator was done. Go into the ADD-ON store and select
the Samba share application for installation. Click on the Start button once the Samba

application has been installed.

A Hass.io icon should appear in the Networking tab on a Windows computer connected
to a local network. Now use any text editor available on the Windows machine to make
the edits to the configuration.yaml file, as discussed earlier. Just ensure that the
Windows editing program does not insert any special or unique formatting codes,

which will render the configuration file invalid. In this context, I strongly recommend

that you do not use Microsoft Word to do any editing.

Configuring Integrations

It is now time to show you how to manually configure devices and services. Most HA
devices and services will have dedicated instruction regarding how to integrate them
into an HA OS. The first step, in most cases, is to locate the device/services
manufacturer in the Home Assistant component Web page. This will be at www.home-
assistant.io/components/. I chose adding the Belkin miniplug as a simple example for a
device integration. Going to the URL shown earlier will reveal the Web page shown in

Figure 5-8.

[.]Hﬂme ﬂsglﬁtﬂnt Geifingstaried Components Doos Coampies Biog biesd heip? &

// Components

Suppdet for these componants is provided by the Home Assistant community.

All{1115) Search components...
Featured
assean0736) amazon echo 9,0, m W
Addedin0.T2(19) = S ":_:’:w Sl sl
Added In .71 {12) i e v

m il iy ey Wty T
Automation (20) S N ®. I-TTT
W@ ccobee o Google Cast ||mm
Calendar (&) ecobed Google Assistant Google Cast IFTTT
Camera (36) - e e A AT
CEmata (37)
owzo (iwERY koDl SMQTE wEid

IKEA Trddtri Kodi MaTT MySensors

Downboading (8) i
Energy (12) s e p et
Fan (13)
b nest ® hemss PLEX
Front end (5) Mest OwnTracks (via HTTF) Philips Hua Plax
Fuel (1)

o b P ——— tuity i - pier

Initial Home Assistant components Web page.

You may be a bit startled to find out that more than 1,100 devices and services are
referenced by this Web page, which you can see by the total count (All) in the sidebar. I
next clicked on the Belkin Wemo icon, and it took me to the Web page that describes
how to integrate a Belkin Wemo unit into the Home Assistant. The following discussion

is based strongly on the contents from that page, which I like because it explains in

simple but clear terms how to integrate a Wemo device.
The Wemo component is used to integrate various Belkin devices with Home Assistant.

Normally, Wemo devices will be automatically discovered if the Home Assistant
discovery component service is enabled. However, manually loading the Wemo
component will force a scan of the local network for Wemo devices, even if the

discovery component service is not enabled.

Every discovered device results in an additional entry into the configuration.yaml file,

for example, configuration.yaml entry
wemo :

Alternately, Wemo devices that do not seem to be discoverable may be statically
configured. This may be the case if you have Wemo devices on a subnet other than the
one where Home Assistant is running or have devices set up in a remote location that is
reachable over a virtual private network (VPN). This approach is also useful if you wish
to disable discovery for some Wemo dervices, even if they are local. An example of a

static configuration is

wemo :
static:
= 192,168,1.23
= 192.168.52.17

Note that any Wemo devices that are not statically configured but still reachable via the
discovery service will still be added automatically to the Home Assistant configuration
file. Also note that if you employ static IP addresses, you may need to set up your router
(typically running the Dynamic Host Configuration Protocol [DHCP] service) to force
the Wemo devices to use a static IP address. You should check the DHCP section of

your router configuration for this capability.

If the device doesn’t seem to work and all you see is the state “Unavailable” on your
dashboard, check that your firewall doesn’t block incoming requests on port 8989

because this is the address to which the Wemo devices send their updates.

Emulated Wemo Devices

There are a number of software packages that emulate Wemo devices and often use

alternative ports. All static configurations must include the port value, as shown in the

next example.

wemo:
static:
= 192.168.1.23:5200]
= 192.168.52.172:52002

Remember that I discussed the Fauxmo Wemo emulation in Chapter 4. In that
demonstration, I used port numbers ranging from 50015 to 50026 along with the RasPi

IP address to control individual GPIO pins.

AUTOMATING THE HOME ASSISTANT

Creating automating scripts is a key feature in successfully and effectively using an HA
OS. The process of creating a script is called automation, and there a few basics that I

need to cover for you to have a good understanding of this process.

Let’s say that Mary arrives home in the evening and desires to have the hallway and
living room lights turned on by the Home Assistant. This scenario may be broken down

or analyzed as follows:

(trigger) Mary arrives home
(condition) in the evening

(action) Turn on hallway and living room lights

This scenario has three distinct parts: the trigger, the condition, and the action. Each

part is part of an automation rule and has a distinct role. These roles are

m Trigger. Describe event(s) that should trigger the automation rule. In this case,
“Mary arrives home.” The Home Assistant would need to be aware of the state change

of Mary from “not being home” to “being home.”

m Condition. A condition is an optional test that can limit an automation rule to
function only for a specific requirement in your use case. The condition detects current
system states. These states might include the current time, weather, sensors, people,
and other things such as the sun. In this particular case, the rule should be acted on
only after the sun has set. Time would not be a good test because sunset changes

constantly. Multiple conditions also may need to be met before the rule is acted on.

m Action. The action will be performed after a rule is triggered and all conditions are
met. In this example, both the hallway and living room lights are turned on after Mary
arrives home in the evening. Actions can be a multitude of things including setting the

temperature on a smart thermostat or activating a scene, which I describe below.

It is important to differentiate between the various roles. A light being on could very
well be a condition or even a trigger, whereas turning a light on likely would be an

action. Proper role identification is one key to creating workable automation rules.

Internal HA OS States

Automation rules depend on knowing the internal state of the HA OS. In the Home
Assistant, the current state is available by clicking on a Developer Tool icon in the

sidebar shown in Figure 5-9.

<>

Icon for current state(s).

All the current HA OS states will be shown as entities. These entities can be anything,
ranging from lights to people, even the sun itself. A state has multiple parts that are
described in Table 5-3.

Table 5-3 State Components

Name Description Example

Entity ID Unique identifier for the | light.kitchen
entity

State The current state of the | home
device

Attributes | Extra data related to the | brightness
device and/or current
state

Changes in state may be used as trigger sources, and the current state can also be used

in setting conditions.

HA OS Services

All Home Assistant actions are carried out using services. In the Home Assistant, all
current services are available by clicking on a Developer Tool icon in the sidebar shown

in Figure 5-10.

P

—

Icon for current services.

Services allow the HA to control anything already integrated into the OS, for example,
turning on a light, running a script, or enabling a scene. Every service has both a
domain and a name. For example, the service 1ight.turn on is capable of turning on
any light registered in the HA system. Services can also pass parameters or arguments,

which can set a specific color for a multicolored lamp and/or set a light intensity.

You will have to set an initial state in your automations in order for Home Assistant to
enable them on restart. The following is an example of a code snippet to be placed in

the configuration.yamdl file to turn on automation:

automation:

- alias: Automation Name
initial state: True
trigger:

Automation Example

It would beneficial at this point to actually create a working automation example. The

automation rule is
Turn on a light after sunset

This rule implicitly defines a trigger that somehow tracks the sunset and will fire the
rule when the sun does set. The service is 1ight.turn on, and if it is called without
any parameters or arguments, it will turn on all integrated lights. An example

automation rule entry in the configuration.yaml file would be

Example configuration.yaml entry
automation:

alias: Turn on the lights when the sun
sets

initial state: True

hide entity: False

trigger:
platform: sun
event: sunset
action:
service: light.turn on

Starting with Home Assistant, version 0.28, all the automation rules can be controlled
with the front-end. Figure 5-11 shows a sample automation rules control panel. Using a
control panel in the front-end means that automation rules can be reloaded (or

unloaded) without restarting Home Assistant itself.

Automation

Ll

Check the battery state of a tablet

J

Send notification if switch is used

‘-II

Turn on light when switch is used

Ll

Update Available Notifications

Sample automation rules control panel.

If you don’t want to see the automation rule in your front-end, use the statement
hide entity: True tohideit. You can also use the statement initial state:
'off' or 'false' sothatthe automation is not automatically turned on after a

Home Assistant reboot.

I added the preceding automation rule to the configuration.yaml file and rebooted the
RasPi in order to reboot the Home Assistant OS with the modified configuration file.
After the Home Assistant was started, I observed that the Hue lamp turned on after I

ensured that the sun entity was false or off. This meant that it was sunset.

Modifications to the Automation Example

Let’s suppose that after a few days of using the automation rule you observe that the
lights went on after it was already dark and also that the lights went on when nobody
was home. This means that it is time for some modifications and conditions to be added
to the automation rule. One modification would be to add a time offset to the sunset
trigger as well as adding a condition to test whether anyone is home. The following
modified rule should replace the existing automation rule in the configuration.yaml
file:

Example configuration.yaml entry
automation:
alias: Turn on the lights when the sun
sets
trigger:
platform: sun
event: sunset
offset: "-01:00:00"
condition:
condition: state
entity_id: group.all_devices
state: 'home'’
action:
service: light.turn on

I did not test this particular automation script because I had not yet set up presence
detection, which I describe in a later section. The preceding script is not the end of this
tale of automation. You recently discovered that the bedroom lights also went on when
the living room and kitchen lights went on after sunset. What you really want is for only

the living room lights to turn on after sunset.

The first thing to do is to check the names of all the light entities that are integrated into
the HA system. You can do this by clicking on the Developer Current State icon, Figure

5-9 in the Home Assistant sidebar. Write down the names of all the light entities.
Suppose that they are 1ight.table lamp, light.bedroom,and 1ight.ceiling.
A group will be set up in the automation rule that will avoid the issue of hard coding the
light entity IDs in the automation rule. This approach will separate the living room

lights from all other lights in the automation rule.

The configuration.yamdl file is once again modified with this new group to ensure that

only the desired light(s) in the group are activated:

Example configuration.yaml entry
group:
living room:
- light.table_ lamp
- light.ceiling

automation:

alias: Turn on the light when the sun
sets

tricger:
platform: sun
event: sunset
offset: "-01:00:00"

condition:
condition: state
entity id: group.all devices
state: 'home'

action:
service: light.turn_on
entity id: group.living room

The holidays are approaching, and you decide to purchase a remote control switch to
control the Christmas tree lights using the Home Assistant. You first integrate the
remote switch with the Home Assistant and find the appropriate entity ID using the
State Developer tool. In this case, itis switch.christmas lights. The automation
rule must be modified once more to handle the switch, but the action 1ight.turn on
is no longer applicable to the new device, which is a switch. Fortunately, Home

Assistant has a service named homeassistant.turn on thatis capable of turning on

any entity. The modified automation rule is

Example configuration.yaml entry
group:
living room:
- light.table lamp
— light.ceiling
- switch.christmas_lights

automation:

alias: Turn on the lights when the sun
sets

hide entity: True

trigger:
platform: sun
event: sunset
offset: "-01:00:00"

condition:
condition: state
entity id: group.all devices
state: 'home'

action:
service: homeassistant.turn on
entity id: group.living room

Setting Up Presence Detection

Presence detection detects whether people are at home, which is a very valuable input
for creating automation scripts. Knowing who is at home or where they are will open a

whole range of automation options, including
m Sending a notification when a child arrives at school
m Turning on the air-conditioning when I leave work

The Home Assistant device tracker component provides presence detection. It supports

three different methods for presence detection:

1. Scan for connected devices on the local network.
2. Scan for Bluetooth devices within range.
3. Connect to a third-party service.

Scanning for connected devices is easy to set up with options that include using Home
Assistant components known as router-based devices/services, a portion of which is

shown in Figure 5-12.

Actio arvba MiSUS

Astion Aruba ASUSWHT

B, s)Bluetooth

Automatic Bbox Bietooth LE Tracker

&3 Bluetooth (&) BT

Bluetooth Tracker B Connectid Drive BT Home Hub &
Denvica Tracker
Inir % s
=t
Lkl DI freebooc
Cisog 103 DO-WHT Friebox
AM (/) Al
FRITZ:Box Geotency Googhe Maps Location

Sharing

A few of the Home Assistant presence-detection devices/services.

The second approach uses the Nmap utility. The Web page www.home-
assistant.io/components/device_tracker.nmap_ tracker/ describes how to set up the
Nmap utility on the RasPi. This approach does have its limitations, but it will only be
able to detect whether a device is at home, and modern smartphones may show as not

home inaccurately because they disconnect from WiFi if idle after a certain time period.

You can also scan for Bluetooth and Bluetooth LE (light energy) devices. Fortunately,
modern smartphones don’t turn off Bluetooth automatically, although the range is
smaller than with WiFi.

Home Assistant currently supports many third-party services for presence detection,
such as OwnTracks over MQTT, OwnTracks over HTTP, GPSLogger, and Locative.

Overall, a wide range of options is available, both for scanning the local network and for

third-party services.

Home Assistant will know the location of your device if you are using a device tracker
that reports a GPS location (such as OwnTracks, GPS Logger, the iOS app, and others).
You will also be able to add names to the locations of devices by creating zones. In this
way, you can easily locate on the state page where the people in your house are and use

it both for triggers and conditions for automation scripts.

There is one caution in that if you're looking at the map view, then any devices in your
home zone won’t be visible. The Home Assistant map view is part of the front-end and
is designed to display the location of all tracked devices, except those located in the
home zone. You add the map by including the following simple entry in the

configuration.yaml file:
Example configuration.yaml entry

map:

SUMMARY

This chapter described what an HA OS is and how it operates. I began it with a brief
description of how a regular computer OS works and proceeded to extend that

discussion to how the HA OS functions and how it differs from a computer OS.

A detailed list regarding a dozen open-source HA OSs was next presented. I also
included a discussion of the Hass.io OS, which is a wrapper-type OS for the Home
Assistant HA OS addressed throughout the remainder of the chapter.

A through discussion on how to install and configure the Home Assistant HA OS on a
RasPi 3, Model B, was next. A brief demonstration of using the Home Assistant with a

Philips Hue smart bulb also was included.

I next showed how to modify the Home Assistant configuration file using a Web-based
editor provided by a Home Assistant add-on named the Configurator. A Belkin Wemo

miniplug was manually integrated into the Home Assistant using the Configurator.

I next demonstrated how to create an automation script that used both states and
services. An extensive discussion followed about modifying the automation script three
times to optimize its operation. The chapter concluded with a brief discussion of

presence detection and how to implement it in the Home Assistant.

Z-Wave and Home Automation

USING Z-WAVE IN A RASPI HA project is the intriguing subject for this chapter. I
have mentioned Z-Wave in previous chapters because it is a predominant and proven
technology that has been adopted by many HA device manufacturers. These companies
include established brands such as GE, Black & Decker, Schlage, ADT, and Draper.

Z-WAVE FUNDAMENTALS

Z-Wave is a wireless packet-based RF communications platform. It is somewhat similar
to WiFi because the latter also uses RF and packets, but there are also significant
differences. Z-Wave uses RF transceivers that operate at 908.42 megahertz (MHz) in
the United States and at 860 MHz in Europe. These frequencies belong to the
industrial, scientific, and medical (ISM) radio band, which is significantly separated
from WiFi frequencies, which are either at 2.4 or 5.0 gigahertz (GHz). The ISM band is
often subject to much less noise and interference than the higher frequency WiFi bands.
A Z-Wave RF transceiver has a typical range of 100 meters (m), which is comparable
with a WiFi node. It is also subject to the signal attenuation that occurs indoors owing
to walls and doors interfering with the signal strength. Z-Wave signal extenders are

available, just as there are WiFi signal extenders.

Parts List

https://avxhm.se/blogs/hill0

mounir
Typewriter
https://avxhm.se/blogs/hill0

Item Model Quantity Source

RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com
Z-Wave duplex outlet GE Z-Wave Plus Smart Lighting 1 amazon.com
and Appliance Control Receptacle
Outlet

Z-Wave controller GE Z-Wave Wireless Lighting 1 amazon.com
Control LCD Remote

Z-Wave outdoor module Jasco Z-Wave Plug-In Outdoor 1 amazon.com
Module (45704)

Z-Wave USB dongle Aeon Labs DSA02203-ZWUS 1 amazon.com
Z-Wave Z-Stick Series 2 USB
Dongle

A group of Z-Wave transceivers makes up a mesh, with each transceiver considered a
node in that mesh. Each node can both receive and transmit digital packets. Nodes not
only can originate data packets but also can receive and retransmit data packets from
other nodes. This action is known as digipeating and is a very important property of a
mesh network. A node that is digipeating is called a hop. Only four hops are allowed for
any specific data packet because of regulatory concerns regarding unlicensed operation
within the ISM band. All data packets are destroyed after the fourth hop in a process
known as hop kill.

Z-Wave Network Basics

The Z-Wave data communications protocol is in compliance with the Open System
Interconnection (OSI) seven-layer network model. The complete seven-layer model is

shown in Figure 6-1.

Transmitted Received
Data Packet Data Packet

A

[Application (Layer ?ﬂ

| Presentation (Layer 6) |

[Session (Layer 5)]

[Transport (Layer 4)]

[Network (Layer 3) J
[Data Link (Layer 2)]
[Physical (Layer 1)]

Y—)‘- RFLink ——»

OSI seven-layer network model.

However, not all the model layers are implemented in the Z-Wave communications
protocol. This is because the OSI model’s seven layers were designed to cover a host of
different protocols, some of which are irrelevant for Z-Wave. Figure 6-2 shows the four

layers that are implemented with remarks in each layer detailing the implementations.

OSl Level
Application Layer
(Main Loop)
7 Z-Wave- Application-
Specific Specific
Commands Commands

Network Routing
4 (Frame Routing, Topology Scan,
Routing Table Update)

Transport Layer

3 (Retransmission, ACK, Checksum)
PHY/MAC Layter
2 (Media Access @
908MHz/860MHz)
1 Physical Layer
RF ISM Band

Z-Wave-specific network model.

Layer 1 is the physical layer, which uses an ISM band RF transceiver to both send and
receive digital packets. These packets are raw in nature in the sense that they are either
decoded in the model upper layers for receive packets or simply sent out for the already
formatted transmit packets from the upper layers. Every node has Carrier-Sense
Multiple Access with Collision Detection (CDMA/CD) hardware, which determines
when it is safe to transmit over the network. CDMA/CD has been compared with the

very old-fashioned telephone party line, where a user would first pick up the headset

and listen to determine if anyone was currently talking on the line. The user would then
start the call if nothing was heard and otherwise hang up and try a little bit later.
CDMA/CD does the same except that the time frame is in milliseconds rather than

minutes, as would be the case for a party line.

Layer 2 is the data link, where a packet to be transmitted has a synchronization
preamble along with a start-of-frame (SoF) byte prepended to the data payload sent
from higher OSI levels. Additionally, an end-of-frame (EoF) byte is appended to the
end of the data payload. Received packets are treated in the reverse manner; that is, the
received raw data packet has its framing bytes removed before the data payload is sent

upward to the higher OSI layers.

Layer 3 is the transport, where additional bytes are added to the data packet being
prepared for transmit. These bytes depend on the active communication process. Z-
Wave is a connection-type network, which has a very robust method of ensuring packet
delivery. Layer 3 uses an acknowledgment (ACK) byte and negative acknowledgment
(NACK) byte to maintain a continuous communications link. A node acting as a
receiver will send back an ACK packet to the transmit node if it successfully receives a
data packet. Likewise, it will send back a NACK if the packet was corrupted or somehow
not completely received. This handshake will continue until the original packet is
successfully sent or a preset limit of retries is reached, a so-called timeout operation.
Using ACKs and NACKs depends on detecting errors in the data packet, which is why
there are two checksum bytes included in every data packet. These bytes are used by the
layer 3 implementation code to test the received data payload using a mathematical
algorithm called the cyclic redundancy check (CRC). It should be apparent that layer 3
works mainly with receive packets to ensure a stable communications link. It must also

generate the checksums for the transmit packets.

Layer 4 is for routing, where transmit packets have address information included in the
packet to ensure that the packet arrives at the intended node. This layer also ensures
that nodes will digipeat. Routing information is maintained in a table located in the
primary network controller node. It is possible to have multiple primary controllers
present in the network, but only one can be active at any given time. Figure 6-3 shows a

simple network topology along with a routing table for that topology.

Node Topology Routing Table

00
ofe

Simple mesh network topology with routing table.

bW k| =
OO |=|O|=|0O|=—=
o |=|=|=|lo|=|M
- OO |C|=|0O|w
O 00O |=|=|&
= O |0 |0 |=|0O|un
O | =O|=|O|0C|

You should be able to see that there is no direct connection between nodes 4 and 5. Any
packets exchanged between the two must go through node 2 or the longer path from
node 2 to node 3 to node 6. Note there is an even longer path—node 1 to node 2 to node
3 to node 6—but this path would never be taken because it involves four hops, and the

packet would be dumped because of the four-hop restriction I mentioned earlier.

Layer 7 is the final one used in the Z-Wave network model, and it is the “highest”
abstraction, the application layer. It is in this layer that the user inputs Z-Wave
commands either through direct action such as a remote control or via program or
script code. This layer is the user interface (UI), and it may be implemented in
hardware, software, or a combination of both. Table 6-1 details the five different packet

types used in a Z-Wave mesh network.

Table 6-1 Z-Wave Network Packet Types

Packet Payload
Type Description Length | Remarks
Multicast | Broadcast to all 64 bytes | Oxff
network nodes max. address
Singlecast | Sent to a specific | 64 bytes | Up to
node max. 232
nodes
Routed Repeated packet | 64 bytes | 4 hops
(digipeated) max. max.
ACK Acknowledgment | 0 -
NACK Negative 0 —
acknowledgment

Every Z-Wave network uses a 4-byte ID called the Home ID. Each primary controller
has this Home ID, which slave nodes acquire when they join the network. Every
secondary controller also uses the same Home ID when they are attached to the
network. Individual slave nodes have a 1-byte ID that is assigned by the primary

controller when that slave node joins the network.

Network Devices

Z-Wave network controllers and slaves are the two device types that comprise a Z-
Wave network. Slaves are also known as end point devices because they only respond to
the command packets sent by the controller. Slaves usually contain a microcontroller
with GPIO pins that, in turn, control TRIAC (triode for alternating current) devices,
which turn AC mains on and off. These GPIO pins are most likely to use optoisolators

for maximum protection against inadvertent faults with the AC mains.

Figure 6-4 shows a Z-Wave-enabled duplex outlet I used for the next demonstration. It
resembles an ordinary US duplex outlet except for the small push button between the
sockets. Of course, the Z-Wave stamping on the front reveals the true nature of this
device. This outlet is also about thirty times more expensive than an ordinary “dumb”
duplex outlet, but you wouldn’t need to have all that many smart control points in your

house.

Z-Wave-enabled duplex outlet.

The user must press the button on the duplex outlet to join the Z-Wave network when
prompted by the controller device. I will demonstrate how to join the outlet shortly in a
demonstration, but I next need to mention a few things regarding the network

controllers.

Z-Wave network controllers are either portable or static. Portable controls resemble
ordinary AV remote controls, as can be seen in Figure 6-5, which is a GE portable Z-
Wave controller. These controllers must be able to self-discover their location within
the network topology because they do not have the advantage of being placed in a fixed
location. Such self-discovery is made possible by having the portable controller ping
nearby nodes that are within their RF range. The controller can then join the network
based on the results of the ping packet search. Portable controllers are battery powered
and are often used as the primary controller within a Z-Wave network. The controller

shown in the figure runs on three AAA batteries, which last a long time.

GE portable Z-Wave controller.

Static controllers are the other type, and they are so named because they are powered
by AC mains and are situated in fixed locations. A static controller can easily monitor
all the network traffic and often serves as a secondary controller in an advanced
network configuration. The current network configuration may be stored in it, and if so,

it is known as a static update controller (SUC).

Most often a static controller serves as a bridge between Z-Wave components and
devices and non-Z-Wave devices, such as X-10 devices. The static controller acts as a
virtual node when deployed in this manner, bridging and converting “foreign” data

packets between the outside devices and the Z-Wave network.

A Z-Wave network may have up to 125 virtual nodes, which could be a great help in the
case of a large HA system with many legacy devices and components that need to be
converted to a Z-Wave network. Static controllers also may serve as TCP/IP gateways,

thus allowing Z-wave network Internet connectivity.

Static controllers may act as primary controllers in cases where the normal primary
controllers can be placed into a static control proxy situation. In such a setup, this
advanced configuration is known as a SUC ID server (IS). I will not be using such a
complex configuration in any book project, but it does suggest that a large variety of

system configurations can be created using Z-Wave controllers.

The Z-Wave Microcontroller

The original Z-Wave chip was designed and manufactured by Zensys, now known as
Sigma Designs. All certified Z-Wave component manufacturers must use this authentic
Z-Wave chip in their devices. This ensures that any Z-Wave node properly joins the
network and communicates with other nodes produced by other manufacturers. The
Zensys chip design is discussed in this section because it forms the basis for the
complete Z-Wave concept and provides a background for understanding how the RasPi

can function as a controller in a network.

A recent Zensys single module is Model ZW3102N, containing a ZWo0301 chip that uses
the venerable 8051 core with a 32-MHz external crystal. This is a hybrid module
containing a lot of additional components, including a RF transceiver operating on
either the U.S. or European ISM frequency. There is also a built-in digital modem along
with a hardware implementation of the network stack operations that were discussed in
the preceding section. The ZWo0301 chip has only 32 kilobytes (kB) of Flash memory
and a meager 2 kB of static random access memory (SRAM). It operates on a supply

voltage range of 2.1—3.6 V DC and consumes a maximum of 36 milliamperes (mA)

when transmitting. Figure 6-6 is the block diagram of the ZW3102N showing all the
components that constitute this module.

ZM3102N Z-Wave Module

RF Supply

Decoupling System Crystal Voltage Filtering

ZM3101 Single Chip
32KBytes | Systemm | |General |1 | POR/
Flash Memory Aotk Purpose| | Brown-
Timer out
Z-Wave SWAPI | — - —
and Timer Watch- | (8/12Bit
Application SW o1 dog ADC
2 kbytes||256 bytes| i RF Transceiver RF Front End
SRAM [| SRAM wut
UART
8051W CPU
Triac Power :
Control Mgt. | W <en WF--------4
7 SFR Modem
|
Interrupt SPI |
Control || Control 1/O Interfaces

Block diagram of the ZW3102N module.

The ZWo0301 chip has several of the standard functions that have been discussed in
previous chapters, including the serial peripheral interface (SPI) and the universal
asynchronous receiver/transmitter (UART) interfaces. The chip also has timers,
interrupts, a watchdog monitor, power management, and brownout detection. It has a
four-channel, 12-bit analog-digital converter (ADC), a pulsewidth-modulation
controller, and an enhanced TRIAC control with zero crossing detection. A total of 10
GPIO lines are available, but some are multiplexed or shared with other I/O functions.
The ZW3102N module is very small. Figure 6-7 shows the module with a U.S. quarter

coin for comparison.

ZW3102N module.

The module does need an external antenna, and a few capacitors and inductors
complete a Z-Wave device installation. The software is also fixed in the Flash memory
and is not available for examination or modification. This where this chapter’s RasPi
project will open up the Z-Wave network so that you have a chance to experiment with
various configurations and monitor network traffic. But first I would like to

demonstrate a simple Z-Wave network.

Z-Wave Demonstration

This demonstration uses a portable controller (shown in Figure 6-5) along with two
nodes. One node is the duplex outlet shown in Figure 6-4, and the other is an outdoor

module, as shown in Figure 6-8.

Z-Wave outdoor module.

Please notice the black button located on the top of the device in Figure 6-8. The user
needs to press this button to join the device to the network when prompted by the

controller menu.

The demonstration network nodes or slaves will be made up of the duplex outlet and

outdoor module, each controlling a small table lamp. The duplex outlet will actually be
connected to a power cord plugged into a regular outlet for this temporary test

arrangement. Figure 6-9 shows the test setup on my dining room table.

Z-Wave test system.

At first, I arbitrarily assigned device number 4 to the outdoor module and device
number 8 to the duplex outlet. I then proceeded to turn the lamp on and off using the
portable controller, and everything worked as expected. I was also able to control both
devices simultaneously by selecting the “All” mode on the portable controller. The next
part of the test was a bit harder because I have a smaller home with an open-plan
layout, meaning that there are fewer interior walls than an average cape-style home. I
was finally able to place the outdoor module device in the basement and the duplex
outlet on the first floor, and I operated the controller in a second-floor bedroom. I was
not able to turn on the basement module without having the first-floor module plugged
in. This proved that the first-floor module was digipeating and forwarding the control
packets to the module located in the basement. The controller showed “Failure” on its
liquid-crystal display (LCD) screen with the first-floor module unplugged. This status
indicates that no ACKs were being received. Obviously, no NACKs could be sent
because the first-floor module was unpowered and the basement module was out of

range.

Setting up this demonstration was very simple, and it amply shows that the high-tech
Z-Wave network functioned well while providing the user with a very easy-to-use and
useful interface. The next demonstration shows how to interface a RasPi with a Z-Wave

network. This setup will allow for some interesting experiments.

RASPI AND THE Z-WAVE INTERFACE

Connecting a RasPi to a Z-Wave network requires the use of a Z-Wave USB dongle. One
such device made by Aeon Labs, called the Z-Stick, is shown in Figure 6-10. It
incorporates a Zensys module and a USB interface chip along with some additional
firmware to make the two components work together. It also has an internal
rechargeable battery that enables the storage of firmware updates and configuration

data. The Z-Stick has three operating modes that you should know about:

Aeon Labs Z-Stick.

m Inclusion. This mode adds or includes Z-Wave devices into the network. To add a

device:
1. Unplug the Z-Stick from the USB connector.
2. Press the large button on the Z-Stick. The Z-Stick LED will start to slowly blink.

3. Go to the device that you wish to add while holding the Z-Stick, and press and

release the device’s button.

4. The Z-Stick LED will blink rapidly for several seconds, then glow steadily for 3
seconds, and finally return to a slow blinking state. The device has been added to the

network.

m Removal. This mode will remove or exclude Z-Wave devices from the network. To

remove a device:
1. Unplug the Z-Stick from the USB connector.

2. Press and hold the large button on the Z-Stick for about 3 seconds. The Z-Stick LED

will start to blink slowly and then transition to a fast blink.

3. Go to the device that you wish to remove while holding the Z-Stick, and press and

release the device’s button.

4. The Z-Stick LED will then glow steadily for 3 seconds and finally return to a fast

blinking state. The device has been removed from the network.

m Serial API. This is the mode where the Z-Stick acts as the portal between the RasPi
and the Z-Wave network. Simply plug it into a powered hub USB connector because the
RasPi does not have sufficient power for the Z-Stick. RasPi software will now take

control of the Z-Wave network.

I now have to take a brief detour from the Z-Wave to introduce the Secure Shell login

process that will be used in establishing the control software environment.

SSH LOGIN

In this section, I will show you how to log onto the RasPi using a network connection.
The Stretch Linux distribution, as well as many others, includes a great service known
as Secure Shell (SSH). It is a network protocol that uses cryptographic means to
establish secure data communication between two networked computers connected via
a logical secure channel over a physically insecure network. SSH uses both server and

client programs to accomplish the connection.

One of the questions that arises when you are first configuring your RasPi is whether or
not to start SSH on boot-up. I recommended that you answer yes because that
automatically starts the SSH daemon each time you start the RasPi. The second part of
the connection is the client program, which is highly dependent on the type of
computer you are using to connect to the RasPi. I recommend using putty.exe
because most of you will be using a Windows-based machine. Putty is freely available
from a variety of Internet sources, so I would recommend a Google search to locate a
good download mirror. You should see the Figure 6-11 screenshot, assuming that you
answered yes to the SSH question and have downloaded and are running Putty on a

Windows-based computer connected to the same network that connects to the RasPi.

ﬁ PuTTY Configuration

L

Category:

—|-Session

? ‘. Logging

—J- Terminal

- Keyboard

- Bell

- Features
=-Window

l - Appearance

- Behaviour

I - Translation

- Selection
| - Colours

—-Connection
- Data

. Proxy

- Telnet
- Rlogin
&-SSH

. Serial

| About

Basic options for your PuTTY session
Specify the destination you wantto connectto

Host Name (or IP address)

pi@openzwave local|

Connection type:
Raw Telnet

Load, save or delete a stored session

Saved Sessions

Port
22

Q) SSH Serial

Default Settings

Load |
| Save
Delete

Close window on exit:
) Always Newver

@) Only on clean exit

l | Cancel

Putty screenshot.

Don’t be concerned with the host name that appears in the screenshot; I will get to that

shortly. When you click on the Open button at the bottom of the Putty screen, you will

see a screenshot of a RasPi terminal window asking, in this case, for a login password

(Figure 6-12).

@8 opencmvesocllLF

RasPi terminal window.

At this point, you are in a RasPi terminal window session—absolutely no different from

looking at a monitor connected directly to a RasPi and using a locally connected

keyboard and mouse. This transparency is what makes SSH so great; it allows you to

remotely log in to the RasPi without being concerned with any minutiae about the

connection. You may type in any normal command and have the RasPi respond as

appropriate.

I will now return to my Z-Wave software discussion, now that you are familiar with

SSH.

PROJECT THINGS BY MOZILLA.ORG

Project Things is a software framework consisting of applications, utilities, and services
that can connect smart HA devices to computers and microcontrollers such as the
RasPi. The latest implementation of Project Things is called the Things Gateway. It will
allow you to directly control and/or monitor HA devices and appliances over the Web.
It can replace all the separate mobile apps that can quickly accumulate for individual
HA devices, systems, and appliances. Mozilla has made available a full RasPi Debian
Linux distribution that contains the Things Gateway preinstalled and ready for
deployment. You will need to use an OpenZWave-compatible dongle (adapter) to be
able to communicate with any existing Z-Wave devices. I used an older Aeon Labs Z-
Stick S2 dongle that I had from use in previous projects. You can also use this if it still

available; otherwise, use either one of the following:
m Sigma Designs UZB Stick
m Aeotec Z-Stick (Genpg)

Ensure that the stick uses the correct frequency for your region, which I discussed in an

earlier section.

Software Installation

Much of the following discussion is based on a blog tutorial written by Ben Francis that
is available at https://hacks.mozilla.org/2018/02/how-to-build-your-own-private-
smart-home-with-a-raspberry-pi-and-mozillas-things-gateway/. The first thing you will
need to do is to download the disk image from https://iot.mozilla.org/gateway. The

current gateway was version 0.4 at the time of this writing.

Next, create a bootable micro SD card using the procedures discussed in Chapter 1.
Mozilla also has instructions on how to run the gateway software on a PC or Mac if you

are inclined to experiment. However, I will be staying with the RasPi installation for
this book.

The gateway software will start a WiFi hot spot with the SSID name of Mozilla IoT
Gateway. You should join this network in order to connect the RasPi to your own WiFi
network. If you are using another computer on your network or a smartphone, the
Mozilla IoT Gateway will show all the local WiFi networks detected, as shown in the

Figure 6-13 tutorial example. Select your regular network, and enter the passkey or pass

phrase for a secured network.

Welcome

Connect to 2 WiFi network?

Subether

BTHub6-SR2G

PLUSNET-3H95

moz:/fa

WiFi network selection.

If you are using the RasPi browser, go to http://gateway.local/ and start the setup
process. Figure 6-14 shows the screen you will see while the gateway connects to your
WiFi network.

Connecting...
The gateway is now connecting to your WiFi network.

Please ensure you are connected to that network and
navigate to gateway.local in your web browser to continue setup.

moz:/la

Connecting to the local WiFi network.

You will be asked to enter a unique subdomain name once you are connected to the
gateway URL. You will also need to enter an e-mail address, which will enable you to
retrieve your subdomain name at any future time. The subdomain name is used, in
part, to generate an Secure Sockets Layer (SSL) certificate, which, in turn, is used to
establish a secure Internet tunnel so that you can remotely access the gateway. Figure

6-15 shows the screen for entering these data.

Welcome

Choose a secure web address for your gateway:

subdomain Jmozilla-iot.org
Email

Create

Skip

moz:/la

Data entry for secure gateway address.

After setting the secure gateway address, you will be placed into your new subdomain,
and another dialog box will appear, where you will enter data to create an account in
the gateway. This data consist of your name, e-mail address, and password. Figure 6-16

shows this account setup screen.

Welcome

Create your first user account:

Mame

Password
Confirm Password

Mext

moz://a

Account setup screen.

This last step completes the gateway configuration/setup, and you will now see an Add
Things screen, as shown in Figure 6-17. How to add things is the subject for the next

section.

Mo devices yet. Click + to scan for available devices.

moz://a

Add Things screen.

Add Things

You add things to the gateway by clicking on the “+” icon located at the lower right-
hand corner, as shown in Figure 6-17. I did this, and Figure 6-18 shows the things or

devices that were discovered.

Welcome

Email

Password

Confirm Password

Mext

Discovered Z-Wave devices.

Any discovered device must be linked or paired subsequently with the gateway. This is
easily done with Z-Wave devices by following the procedure I detailed earlier. When the
pairing is completed, click on the Done button shown in the figure, and the newly

paired devices will appear on the Things screen, as shown in Figure 6-19.

o

Fevarve-1Eal2da 3 rwrve- 1627 Jad
Swsitch Sensor

Things screen.

Test Run

The Z-Wave test of the gateway system was rather simple. I simply plugged an AC lamp
into the outdoor Z-Wave device and turned the lamp on and off by clicking on the
Switch icon shown in the figure. Incidentally, I am unsure what the Z-Wave-16a124a-4-
Sensor icon shown in the figure refers to. It may be an undocumented feature for the
switching device. In any event, clicking on it did not cause an action to be observed

regarding the AC lamp plugged into the switch.

SUMMARY

I started this chapter with a definition of home automation and provided a list of
representative tasks that would fall under the broad umbrella that comprises home

automation.

Next was a discussion of the underlying base technologies that support HA
implementations. I provided a rationale for selecting the Z-Wave protocol because it is
a modern, highly flexible system that is very easy to configure and lends itself quite well

to a simple RasPi interface connection.

Two representative Z-Wave devices were described next, along with a working small-
scale Z-Wave network. A network demonstration was created using a commercial

portable controller device.

The core Z-Wave chip was discussed to provide you with a better understanding of how
the overall network functions and how devices are highly dependent on the chip
functions to be added seamlessly to the network. A Z-Stick was shown that enables a
RasPi to Z-Wave interface to be implemented. Several alternatives to the Z-Stick were

also discussed

I next showed you a highly useful SSH remote login procedure that you can use to
access the RasPi while the open-source Z-Wave software is running. The open-source
software executes as a Web service, thus making the RasPi GUI inaccessible. Any user

access to the RasPi must then be done using a remote access service such as SSH.

I used the Project Things framework by Mozilla to create a gateway to control the Z-
Wave devices introduced earlier in the chapter. This project’s version generates a
gateway that you use to access and control Z-Wave devices. The Z-Stick is used to
communicate between the RasPi and any nearby Z-Wave devices. I went through a
detailed discussion of how to install and configure the gateway. The chapter ended with
a simple demonstration of turning an AC lamp on and off using commands sent

through the gateway.

Mycroft and Picroft

THIS CHAPTER INTRODUCES an open-source personal voice assistant project named
Mycroft. Mycroft has a RasPi variant named Picroft, which I will discuss after going
through the Mycroft introduction.

Mycroft’s home website is mycroft.ai. Mycroft is the invention of Ryan Sipes and
Joshua Montgomery, who liked the idea of creating a simple and basic intelligent
virtual assistant, similar to commercial ones in existence at the time but based entirely
on an open-source concept. Mycroft uses only open-source components for the
intelligent personal assistant and knowledge navigator and uses the Linux OS as a
platform. The Mycroft developers were very much concerned with privacy issues and
strongly believed that developing an open-source solution would strongly address those
concerns. It turns out that they were entirely correct in this area because privacy
concerns have recently arisen concerning both the Google and Amazon systems. No

such problems are anticipated with the Mycroft solution.

Parts List
Item Model Quantity Source
RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com
USB microphone Fifine USB Microphone 1 amazon.com
USB speakers ARVICKA Blue LED USB 1 amazon.com
Speakers
Tactile push button Commodity 1 adafruit.com
2.2-kiloohm (KQ), Ya-watt (W) Commodity 1 adafruit.com
resistor
Philips Hue smart lamp White 1 Home improvement store
amazon.com
Philips Hue bridge Philips Hue Smart Hub 1 amazon.com
AC table lamp Commodity 1 Home improvement store

The Mycroft team has raised funds through a variety of sources, including private
equity investors, and has offered shares of the company to the public through
Startengine, an equity crowdfunding platform. The project itself is not named after
Sherlock Holmes’s older brother but instead after a fictional computer from Robert
Heinlein’s 1966 science fiction novel, The Moon Is a Harsh Mistress, which I strongly

recommend that you read if you are sci-fi fan.

MYCROFT STRUCTURE

Mycroft is designed to run on many different platforms, which are called Devices in
Myecroft terminology. Different hardware implementations that host Mycroft are called

Enclosures. The currently supported Enclosures are

m Mark 1. A software image of Mycroft designed to be installed on the Mycroft Mark

1, a reference hardware device described in a later section

m Picroft. A software image of Mycroft designed to be installed on the RasPi 3, Model
B

®m Android. A software image of Mycroft designed to be installed on Android devices

Mycroft uses an open-source intent parser called Adapt that converts natural language
into machine-readable data structures. An intent parser is just a library for converting
natural language into machine-readable data structures, such as JavaScript Object
Notation (JSON). It is lightweight and has been designed to run on devices with limited
computing resources, such as embedded devices including the RasPi. Adapt takes in

natural language as an input and outputs a data structure that includes
m Intent. What the user is trying to do

m Probability match. A measure of how confident Adapt is that the intent has been

correctly identified

m Tagged list of entities. Objects that are used by Mycroft Skills to perform actions

or functions

Adapt is important for interpreting the user’s natural-language input. For example, you
might want to create a voice user interface that allows a user to play a Pandora station.

The utterances a user might say include

m “Turn on Pandora.”

m “Play Pandora.”
m “Play my Jimmy Buffett Pandora station.”

The Adapt intent parser takes this input and generates a JSON data structure similar to
this:

{

"confidence": 0.61,

"target": null,

"Artist": "jimmy buffett”,
"intent_type": "MusicIntent",
"MugicVerb": "put on",
"MusicKeyword": "pandora"

Applications, which are Mycroft Skills in this case, can then parse the JSON data and
take appropriate action, such as playing Jimmy Buffett using the open-source Pandora

application. I will discuss Mycroft Skills in much greater detail in a later section.

Myecroft uses Mimic for speech synthesis, which, in turn, is based on the Festival Lite
speech synthesis system. Festival Lite was developed at the Carnegie Mellon University
(CMU), where it is known as Flite (Festival Lite). It is a small, fast run-time open-
source text-to-speech synthesis (TTS) engine designed primarily for small embedded
machines and/or large servers. Again, this TTS library is targeted to be used within

embedded platforms such as the RasPi.

Mycroft was always designed to be modular, enabling users to change its components.
For example, the eSpeakNG TTS library can be substituted for Mimic if a user finds it

more appropriate.

The wake word is the word or phrase that a user speaks to alert Mycroft that an
utterance will follow. Mycroft uses the PocketSphinx technology developed by CMU for
wake-word detection. PocketSphinx is a lightweight version of CMU’s larger speech-
recognition package named CMUSphinx. PocketSphinx is well suited for embedded
platforms just the way the other Mycroft packages have been designed.

You may change the wake word from the default “Hey mycroft” to anything phrase you

want by going to the home account website at https://home.mycroft.ai/ and entering

your own phrase. There is a constraint on wake-word selection that it must be in the
English language. Wake words in German, French, Spanish, and so on will not work.
However, the Mycroft development team is currently working on an open-source
software package known as Precise that will recognize any wake word in any language.
This is because Precise uses an artificial neural network (ANN), which can be trained to
recognize any series of audio sounds. Of course, this means that you must train Precise
to recognize your chosen wake word before it can be used with Mycroft. It will still be a
while before Precise is made freely available for use by the Mycroft open-source

development community.

Mycroft, like all the personal voice assistants, has speech-to-text (STT) software, which
is used to take any user’s spoken words and turn them into text phrases that can then
be further processed. Mycroft currently uses Google’s STT, but this selection may be
changed due to Mycroft’s modular design. IBM’s Watson STT can be substituted as well
as Facebook’s wit.ai SST package. Mycroft is planning on developing its own open-

source STT solution, which will be named OpenSTT.

Mycroft uses middleware, which is software that is akin to an HA OS. This middleware

has two components:

m Mycroft Core. This is Python code, which is the core software that “glues” all the
other Mycroft modules together. The Mycroft Core code is available from GitHub under

its open-source license.

m Mycroft Home and Mycroft API. This is the software infrastructure that holds
all user and device data. This infrastructure provides high-level services, including
storing API keys, which are used to access third-party services that provide Skill
functionalities. This code is considered proprietary by Mycroft and has not been made
available as open source. This decision does not violate the open-source license that

Mycroft uses to make the majority of its software freely available.

I will not be discussing any further Mycroft structural changes, but I will alerting you to
the fact that it can be done. The Mycroft software was released using the Apache
Foundation open-source library. The important point to be made is that both the
Google and Amazon systems are completely closed source, and users are not able to

make these types of changes to suit their own situations.

MYCROFT HARDWARE

The Mycroft project is not solely about open-source software. The company does offer

hardware that runs its software. The first-generation hardware released by the
company was the Mycroft Mark I shown in Figure 7-1. Incidentally, this hardware is
still available for purchase, with the first units shipping in April 2016. All the company’s

hardware is open source, released under the CERN open hardware license.

Mycroft Mark I.
Some key technical specifications for the Mark I unit are as follows:
m Raspberry Pi 3, Model B
m Built-in speaker
m RCA audio output ports
m 8 x 32 LED display
m Dual NeoPixel “eyes”
m Built-in WiFi (802.11B/G/N)
m 10/100 Ethernet port, HDMI debug port, 4 USB ports, 40-pin GPIO connector
m Integrated Arduino Mini
m Enclosure with side-mount ports
m U.S. power adapter

NOTE: The 40-pin connector has a different pinout than an unmodified RasPi. The
RasPi’s built-in Bluetooth is also disabled.

Figure 7-2 shows the back of the Mark I, where you can clearly see the normal layout of
four USB ports as well as the RJ45 socket belonging to the enclosed RasPi. The two
RCA phone jacks shown in the figure are for external stereo audio, in case the internal

speaker is insufficient. There is also an HDMI socket for an external monitor as well as

a DC power socket for an AC wall wart supply, which comes with the unit.

Mark I back panel.

Figure 7-3 is another view of the unit that shows a large push button protruding from
the case top. The push button supports multiple functions, some of which are discussed
in a later section detailing Mycroft Skills. In any case, a detailed operational PDF guide

on the Mark I is available from the Mycroft website.

Oblique view of the Mark I.

The company announced the Mark IT hardware project in early 2018. Figure 7-4 is a
photograph from the company’s Kickstarter campaign. This next-generation hardware
will include a visual display, making it somewhat akin to the Amazon Show unit. I am

expecting that this unit will likely be available in late 2018 or early 2019.

Mark II prototype.

The company just announced another unit, the Mark III, to be released in 2019. No

further details were available at the time of this writing regarding the Mark III.

The preceding sections all concerned the original Mycroft software and associated
hardware that runs that software. The next sections discuss Picroft, which is Mycroft
designed for the RasPi.

PICROFT

Picroft is the Mycroft software package designed to function with an unmodified RasPi
3, Model B. This is a logical extension for Mycroft because the Mark I uses a RasPi 3,
Model B, as its main processor. I will next detail how to install Picroft, configure it, and

finally test it.

Picroft Installation

A complete set of Picroft installation instructions is available at the Picroft website
(https://mycroft.ai/documentation/picroft/). These instructions also include a list of
all the hardware needed for a RasPi Picroft installation. These items are a RasPi 3,
Model B, a USB microphone and speaker(s), and the usual desktop configuration

accessories.

There are two ways to install Picroft on a RasPi 3, Model B. The first way is the one I
describe in detail in this section and the one that I highly recommend that you follow.
However, you can install and build Mycroft from scratch using the instructions found at
the website https://mycroft.ai/documentation/linux/-installing-via-git-clone. This
installation takes several hours and must be done using a clean Jessie Raspbian disk
image. I would only recommend the second approach for experienced Linux developers

who are confident in their knowledge and ability to resolve any software dependency

issues.

The simplest way to install the Picroft software is to load it in the form of a disk image
that is stored on a bootable micro SD card. The instructions provided for writing a
micro SD card in Chapter 1 also apply to this installation. The following steps should be

done in the sequence presented:
1. Boot the RasPi after you have burned the Picroft disk image.

2. Connect to the WiFi SSID MYCROFT using another computer on the same network

that is connected to the RasPi.

3. In abrowser, go to the Web page http://start.mycroft.ai. A list of WiFi networks
will be displayed. Select the WiFi network that you want to connect to the Picroft, and

enter the passkey or passphrase for that network.

NOTE: Picroft cannot connect to WiFi networks using the 5-GHz band. This usually
means that any network with a “5G” in its name is not to be used. In addition, 2.4-GHz

WiFi networks using channels 12 or 13 (2.467 and 2.472 GHz) cannot be used.

4. The Picroft software will proceed to automatically connect to the Internet and
download a considerable amount of data. Please be patient while this download takes
place. Once the download has finished, a message will be displayed on the monitor
providing a registration website and a five- or six-alphanumeric-character sequence
that you need to enter at the website. The registration website that I used was
https://home.mycroft.ai/device. Yours may be different because these installation
procedures do change occasionally. The registration character sequence will also be
repeatedly spoken through the USB speaker. Mycroft refers to this process as pairing,

not to be confused with Bluetooth pairing.

5. The next step is to set up an SSH link with the RasPi. There are several ways to

accomplish this task:

a. Go to your WiFi router’s admin login, and examine the attached wireless devices
and try to determine your RasPi’s IP address. Use this IP address to connect to the
RasPi per the SSH instructions provided in Chapter 6. Please note that the password for

SSH login is “mycroft” not the usual “raspberry.”

b. Go to the Mycroft documentation website https://mycroft.ai/documentation, and
read about how to add the IP address. Then speak the phrase “Hey Mycroft, what’s your

IP address?” The response both spoken and on the screen should be “Here are my

available IP addresses: wlan IP address ... Those are all my available IP addresses.” A
word of caution is in order here; this procedure may not work because your USB
microphone may not be enabled. I will shortly discuss how to enable the USB

microphone.

c. Press CTRL-C to exit Picroft and get to a terminal prompt on the RasPi monitor.
Then enter the command i fconfig, and the current IP address will be shown in the

wlan0 section. You will have to reboot the RasPi to restart Picroft.

At this point, you should have fully functional Picroft system. However, I found that my
USB microphone still was not working properly with the software. This situation
required me to make a configuration change to the pulse audio system that Picroft uses
for its audio sinks and sources. The procedure I used for this configuration change

follows:

1. Find the proper USB identification for the microphone. One way is to enter the

following command at a terminal prompt:
pactl list short sources

2. Edit the pulse audio file named default.pa. It is in the directory /etc/pulse. My edit
consisted of changing one of the last two lines in the file from set-default-source
input to set-default-source alsa input.usb-
Samson_Technologies_Samson_CO1U—OO—C01U.analog—stereo.Thek&t

portion of the line came from the pactl command
3. Reboot the RasPi to allow the configuration change to take effect.

I found that the Picroft functioned as expected after I enabled the USB microphone. I
tested the system by speaking this phrase: “Hey Mycroft, what time is it?” The response

was both spoken and displayed on the Picroft log screen, as shown in Figure 7-5.

thing changed f deviceseelacaS0-382

855 - urllib3.conmectionpool - DEBUG - St new H'J'TF'r.:"Jconu'gtion 1): api roft.al: 443
318 - Ilri\ib?.ctmncctlnnpluol = DEBUG - https:ssapl.mycroft.ai:#43 “POST AlsstiTlang=en-USA1init=1 HITP,

7 ~ SKILLS - DEBUG - (“type™: "mycroft .speech.recognition .unknown”, "data”: (), “comtext™: mull}
97 - mycroft.client.speech. | Istener: transcribe: 182 - INFO - no words were transcribed
1.:: - msrt.cllm.tpugch.l_lllw:tnmihtlﬁ ERROR - Speech Recogmition 1d not understand sudio
e - SlaI'L],S = :ﬁ : :_Ity'p:“: A1l 8 ¥ "ﬁuntt!l"lii mull, "skill_id": “"skill-date-time”, “utterances™: mull, “lang™: “en-usz"1}
IﬁBl. - . '-upe‘. i11.comverse.response”, “context™: (}, “data "skill_{d": “skill-date-time”, “result”: false}}

mrolt.skiIl:.sgl.tings._reqw:_s_ug_scttlvqszﬂo = DEBUG - getting skill settings from server for WeatherSkill
13 - urllib3.comectionpool - DEBUG - Starting new HTTPS connection (1): apl.mycroft.al:443

';1_1} - urllib3.conmectionpool - DEBUG - https:.apl.mycroft.al:443 “GET svlsdeviceseelaca50-3824-4aZb-bIb4-cadbe180d%ar skill HITPA1.1" 304 @
: 382

mycroft.api:send:111 - DEBUG - Etag matched. Hothing changed for: dev s b-bIbt-cabbelB0dSaa sk
-291 - SRILLS - DEBUG - (“type™: “skill-date-tine:TincSkillupdate_display®, " : “data”: 13} 2 i
:.2‘3 - I-";roﬂ..:ki'lI:,settlqui_requesl_lg_stllings:116 - DEBUG - getting skill settings server for MewsSkill
065 - urllib3.commectionpool - DEBUG - Starting new HTTPS connection (1): apl.mycroft.al: 443

361 - wrllib3.commect ionpool - DEBUG - https: rapi.m ft.al: " 2
" 0 i -mycroft.ai:443 "6ET sulsdevicescelaca50-3824-4a2b-bIb4-cabbe180d9aa skill HITP-1.1"
5;333 = ﬁml‘t.opl .;c_nd.i&l = E = Etag matched. Mothing changed for: device/celaca50-3824—4aZb-bIbi-cadbeiBoddaa skill i i
E LLS - DEBUG - {“type™: recognizer_loop:record_begin®, “data”: {}, “context": mull}
50.181 - mycroft.client.speech.nic: listen:492 — DEBUG - Recording. ..
15:41:50.193 - lq:ml‘t.ellm.m.uln:hﬂle_mrd_bqln::(, = INFD - Begin Recording
UAVE '/memrt—ml1bmlmﬂ.y:ite—puhgwrort/ru/:mtnurt t.e i " : Signed Stereo
e s - SKILLS ~ DEBUG - ("type": *akill-date-tine:TineSkillupdate. displag”, e R T T e
UAUE tvems mycroft-cores1 IWM.Wtu—wuhmﬁmﬂ;nvmmt - : Si. Rate Steren
15:41:52.369 ~ SKILLS - DEBUG - (“type": “recognizer_loop:record_end”, “data”: (}, “confext™: maily 3Bt Listie Entionc S
t41:52.358 - mycroft.client .speech.main:handle_record_end: 40 - INFO - End Recording. .
?Z:; - m-nrt.cllm.mschuin:hnmlc_mrd‘.ss L |
- type™: “recognizer_loop:uakewor: T " = 945-8ad7-904355900c 12, “atterance™: “hey mycro "ot
;(;; = ::ll:::;m::onpuo% 5 :m S s o ecent :3:3{‘:'7213§3|:—1 d7-984355! 1a”, “wtts : Ly et
- ~commect lonpool - DEBUG - https:/sapl.mycroft.al:443 “POST ~ulrstt? =en-1154 = = Mome
_53.3&‘) = mycroft.client.speech.nic: listen:487 - DEBUG - Maiting for wake on:;. ; e 1 290
- mycroft .client.speech. 11z transcribe:16: : uhat tine is it e
,lhnt time iz it"]1, “lang™: “enUS™}, “comtext™: (i T “153158
ll-date-tine™, “utterances™: [“what time iz it™], “lang™:

e a £ : ..; moa' I-date-time™, “result™: falsel})
s 'ugg data A 1 alse}], “utt “: “ubat ti
| = tterance™: me iz It*, “skill_date_t =
11, fent_name™: “mycroft_listener”, “ident™: T
m:ﬁr:rs_liﬂtm". “ldent": 1531582912 IPS2IT- 1976868642,
0 lata @ x

toner®, “ident™: “1531SE2912. I7S2I9P-19
[l [e——
2> ten thirty eight Log Dutput Legend ===z:se-.

3 It's ten forty one — DEBUG cutput
mycroft-skills. log. other

mcroft-speech-client . log

Picroft log screen for the utterance “Hey Mycroft, what time is it?”

CONFIGURING MYCROFT

I would like you to perform a simple experiment before I explain how to configure the
Myecroft software. Ask Mycroft the following: “Hey Mycroft, what is my location?” The
answer will likely startle you, as it did me. The response both in text and spoken was:

“I'm in Fredonia Kansas United States.”

This is a very strange response at first glance until you realize that the location is
hardcoded into the Mycroft configuration file and also takes location data from the
Mycroft home website (https://home.mycroft.ai/). The basic Mycroft configuration file
is named mycroft.conf and is stored at

/opt/venvs/mycroft-core/lib/python3.4/

sitepackages/mycroft/configuration/
mycroft.conf

And yes, that location has eight directory levels to it, not the easiest to find. The

configuration file has four sections, which are loaded in the following progression:
m DEFAULT

m REMOTE

m SYSTEM
m USER

Because the USER level is the last to be loaded, it can always override any settings or
configurations loaded by any one of the prior levels. The following listing was extracted
from the DEFAULT section of the configuration file. In this listing, you can clearly see
where the Kansas and United States locations came from. The Fredonia word came
from the Location textbox entry from the home website, as shown in Figure 7-6. This

entry became an override for the Lawrence name shown in the basic configuration file.

Device Detail

NAME
CORE VERSION INSTALLED
Picroft 0.8.1
DESCRIPTION ENCLOSURE VERSION INSTALLED

Raspberry Pi 3 s

LOCATION

Fredonia

Your device location also autosets your timezone.

REMOVE DEVICE

Location entry from the Device page in the home account.

/7
s

Location where the system resides
NOTE: Although this is set here, an

// Enclosure can override the wvalue
// For example a mycroft-core running in
// a car could use the GPS.
// Override: REMOTE
"location s
"eity"s {

"code": "Lawrence",
"name": "Lawrence",
"state": {
"code": "KS",
"name": "Kansas",
"eountry: o
"code": “"US",

"name": "United States”

}
}o

"coordinate": {
"latitude”: 38.971669,
"longitude": -95.23525

}o

"timezone": {
"code": "America/Chicago",
"name": "Central Standard Time",
"dstOffset": 3600000,
"offset": -21600000

MYCROFT GPIO SKILL

Myecroft Skills are add-ins or plug-ins that provide additional functionality to the

Mycroft software package. Skills have been developed by both Mycroft company

developers and open-source Mycroft community developers and vary greatly in their
functionality and maturity. Hopefully, you will be able to develop your own custom Skill
after becoming familiar with Mycroft development and experimenting with this
particular Skill. I chose the GPIO Skill because it adds an important function to
Myecroft, allowing a user to directly control RasPi GPIO pins in support of an HA
application. You will be able to both read from a GPIO port by detecting a pushbutton
press and write to it by lighting a LED.

Follow this sequence of steps to download and install the GPIO skill:

1. Use a computer on the local network and go to the GitHub webpage at
https://github.com/MycroftAl/picroft_example_skill_gpio. Download and extract the
zip file from this page. This will create a directory named

picroft_example_skill _gpio_master on the computer.
2. Make an SSH connection to the RasPi loaded with the Picroft software.

3. Transfer the new directory to the RasPi. If you are using a Mac or Linux terminal

window, then the command is similar to this one that I used:

scp -r ./Desktop/picroft example skill
gpio-master pi@192.168.1.29%:picroft

example skill gpio-master

4. Stop the Mycroft server if it is running on the RasPi, which will cause a terminal

prompt to be displayed.
5. Enter the following commands:

cd picroft example skill gpio master

sudo nano Makefile

m Edit the Makefile so that the IP address displayed everywhere in the editor is the
RasPi IP address.

m Press CTRL-O and CTRL-X to save and exit the editor.
6. cd /opt/mycroft/skills
7. mkdir skill-gpio

8. cd ~/picroft example skill gpio master

9. make install.pi

10. cd /opt/mycroft/skills/

11. sudo chown mycroft:mycroft -R skill-gpio
12. sudo adduser pi mycroft

13. sudo adduser mycroft gpio

At this point, the GPIO Skill should be ready for a test. However, you will now need to

set up the test circuit.

GPIO Test Circuit

Figure 7-7 is a Fritzing diagram that shows the test circuit to be used for the initial
GPIO Skill demonstration.

fritzing

Fritzing diagram for GPIO test circuit.

Test Run

The test run involves two phases. The first one is the direct programmatic control of the
hardware attached to the RasPi GPIO pins. This will be accomplished by issuing the

following commends either at the RasPi terminal prompt or using an SSH session:

cd ~/picroft example skill gpio-master
make test.pi

I used an SSH session to build the test script test .pi. After the build process finished,
the LED slowly started blinking for approximately 10 seconds. You should also press
the push button sometime within that same 10-second interval. Figure 7-8 shows the

output generated by the GPT0. py Python script that runs during this test.

® @ . donnorris — pi@picroft: ~/picroft_example_skill_gpio-master — ssh pi@192.16...
[pigpicreft:~/picroft_example_skill_gpio-master $ make test.pi]
ssh pi@l82.168.1.2%9 python Jfopt/mycroft/skills/skill-gpio/GPID.py
[pi@192.168.1.29's password:]
{'GPID1': 'On'}

{'GPIN1': 'OFf'}

{'GPIO1': 'On'}

{'GPID1': 'OFff'}

{'GPIO1': 'On'}

{'GPIO1': 'OFff'}

{'GPID1': 'On'}

{'GPID1': 'OFf'}

{'GPIO1': 'On'}

{'GPID1': 'OFff'}

{'GPIO1': 'On'}

{'GPIO1': 'OFff'}

{'GPID1': 'On'}

{'GPIO1': 'OFf'}

{'GPIO1': 'On'}

{'GPID1': 'OFff'}

{'Button': 'Pressed', 'GPID1': 'On'}

{'Button': 'Pressed', 'GPIO1': 'Off'}

{'Button': 'Released', 'GPIO1': 'On'}

{'Button': 'Released', 'GPIO1': 'OFff'}

{'Button': 'Released', 'GPID1': 'On'}

GPIO is walic

{'Button': 'Released', 'GPIO1': 'Off'}
pi@picroft:~/picroft_example_skill_gpio-master % I

GPIO test diagram.

The script shows the continuous LED status while the script ran. The LED logical name

in the script is GP101, and the status is either On or Of £. The push button logical name

is Button, and its status is either Pressed or Released. You will probably notice that
there are multiple occurrences of Pressed and Released for the push button

operations. In reality, I only pressed and released the button one time. The multiple

recorded button states are due to the fast polling taking place in the script.

The second phase for testing involves using voice control with the Mycroft service

operating. Speak the following phrases to test GPIO control:
m “Hey Mycroft, turn LED on.”
m “Hey Mycroft, turn LED off.”

m “Hey Mycroft, blink LED.”

The system will respond by turning the LED on, then off, and finally, blinking it. It also

will speak the responses, such as
m “The LEDison.”

m “The LED is off.”

These responses are continually repeated for the blink operation. In fact, the only way I
could stop the blinking was to use a keyboard interrupt (CTRL-C) to stop the Mycroft

Server.

An additional 26 skills are provided with the disk image in addition to the GPIO Skill
just discussed. I provide a list of these Skills and some further explanations of the more

useful or interesting ones in the next section.

MYCROFT SKILLS

Table 7-1 details all the available Skills in the downloaded disk image included with the
GPIO Skill that was discussed in the preceding section. Most of the table description
content is based on the README.md file found in every Skill directory.

Table 7-1 Available Mycroft Skills

skill Name

Description

skill-alarm

Set daily alarms, recurring alarms, or one-time alarms with Mycroft.

skill-audio-record

Audio functions: record, play, stop, and cancel.

skill-configuration

Change the technology used to perform wake-word spotting, the system that
wakes the device up when you say "Hey Mycroft”

skill-date-time

Get the local time or time for major cities around the world. Times are given in
12-hour (2:30 pm) or 24-hour format (14:30) based on the Time Format setting at
https://home.mycroft.ai/#/setting/basic.

skill-gpio

Demonstrates interacting with the RasPi GPIO pins. Read from a GPIO pin
(detecting a button press) and write to one (lighting an LED).

gkill=-hello=world

Usage: "Hello world,”"How are you?,"and "Thank you."

skill-installer

Add and remove Skills using the Mycroft Skill Manager (MSM). Install a Skill
verbally by saying “Install <skill identifier>,"where <skill identifier= is the full
name or at least an adequate subset of the name to uniquely identify the Skill.

skill-ip Retrieve the network address (aka Internet Protocol [IP] address) to which the
Mycroft device is connected.
skill-joke Brighten your day with a little humor. This draws on the jokes collected by the

Pylokes project (https://github.com/pyjokes/pyjokes) to give you a chuckle, The
joke categories are:

Neutral: jokes that are safe for work, kids, or your grandmother.

Adult: nothing horrible, but be ready to cover some ears.

Chuck Norris: jokes only a geek can love.

skill-markl-demo

The Mycroft Mark 1 menu, which appears when you press and hold the top
button, has a “dema” option. This Skill implements a simple mode that can be
used to draw attention at trade shows, stores, etc. The demo starts with the unit's
eves dancing around. Every two minutes it will sing a song. The singing is synched
to the clock, so multiple units can form a chorus. You can stop the demo by
pressing the top button or saying “Stop.”

skill-naptime

Tell Mycroft to sleep when you don't want to be disturbed in any way. This stops
all calls to the Speech-to-Text system, guaranteeing that your voice won't be sent
anywhere on an accidental activation. When sleeping, Mycroft will only listen
locally for the phrase "Hey Mycroft, wake up” Otherwise, the system will be totally
silent and won't bother you. On a Mark 1, this also dims the LED eyes,

skill-npr-news

Plays the latest news from a configurable RSS-based audio feed. By default, the
NPR hourly news broadcast is used, but you can choose from other news feeds,
including BBC, AP, CBC, CNN, PBS, and Fox. See the setting at https://home.
miycroft.aif#/skill.

skill-pairing

The default back-end to provide services for Mycroft users is https://home.
mycroft.ai/. Pairing a device with Home provides access to privacy-protecting
Speech-to-Text, Wolfram Alpha, and ather such services, as well as easy
configuration for all your Mycroft devices.

skill-personal

This Skill will answer some of the personality questions relating to Mycroft, such
as“What are you?"“Where were you born?," and “Who made vou?”

skill-playback-control

This Skill doesn't do anything by itself, but it provides an important common
language for many audio playback skills. By handling simple utterances such
as“Pause," this one Skill can turn around and rebroadcast the message bus
command mycroft.audio.service.pause. This lets several music services share the
common “Pause” terminology.

skill-reminder

Usage:"Remind me to search about Al in 10 minutes.”

skill-singing

Usage:"Sing." There are five mp3 songs in the skill directory.

skill-speak

Turn Mycroft into a parrot. Speak a phrase and listen to it repeated in Mycroft's
dulcet voice! Examples: "Say Goodnight, Gracie”; "Repeat Once upon a midnight
dreary, while | pondered, weak and weary, Over many a quaint and curious
volume of forgotten lore”; “Speak | can say anything you'd like!”

skill-spelling

Usage:"Spell Mycroft”

skill-stock

Usage:"Stock price of Google, "trading at Google.”

skill-stop

Usage: "Stop.”

skill-support

Generate a package with debugging information and have it sent to your
registered account. You can use this packet to debug issues yourself, or it can be
sent on to the support team. This Skill uses the http://termbin.com/ service for
storing the debugging information.

Examples: "Create a support ticket," You're not working!,"*Send me debug info”

skill-version-checker

Report the version of your Mycroft install (mycroft-core) and of the platform
you are running on (e.q., “Mark 1, build 10”). Examples:
"Check version,”"What version are you running?,"*What's your platform build?”

skill=-volume

Control the volume of Mycroft with verbal commands or by spinning the physical
button on a Mark 1. Examples: "Turn up the volume,”"Decrease the audio,”"Mute
audio,”"Set volume to 5,""Set volume to 75 percent.”

skill-weather

Get weather conditions, forecasts, expected precipitation, and more! By default, it
will tell you about your default location, or you can ask for other cities around the
world. Current conditions and weather forecasts come from Open Weather Map
at https://fopenweathermap.org. For devices with screen support, conditions are
briefly shown. Examples: “What is the weather?,""What is the forecast tomorrow?,”
“What is the weather going to be like Tuesday?,"*What is the weather in San
Francisco?,"When will it rain next?,""How windy is it?""What's the hurnidity?”

skill-wiki

Query www.wikipedia.org for answers to all your questions! Get just the summary,
or ask for more to get in-depth information. Examples: "Tell me about Elon Musk,”
“Tell me about beans,”"Check Wikipedia for beans,"“Search for water”

PHILIPS HUE SKILL

It is reasonably easy to add an HA Skill to the Picroft system. I selected a Philips Hue

Skill that can turn on and off a white Hue light, which I had demonstrated in Chapter 5.

This Skill was created by Christopher Rogers and is available from GitHub at the

website https://github.com/ChristopherRogers1991/mycroft-hue. You can directly

clone and install it by entering the following commands, assuming that you have git

already installed:

cd /opt/mycroft/skills

sudo git clone https://github.com/
ChristopherRogersl1991/mycroft-hue

sudo apt-get install python3-pip

cd mycroft-hue

sudo pip3 install -r requirements.txt

The next part of this Skill installation process is to add some information to the basic
mycroft.conf file concerning the specific Hue device to be controlled. Enter the

following to change Mycroft’s configuration to recognize the Hue light:

cd /opt/venvs/mycroft-core/lib/python3.4/
sitepackages/mycroft/

configuration/mycroft.conf

sudo nano mycroft.conf

Enter this text into the middle of the Skills configuration section:

"PhilipsHueSkill": {

i3 i (1]

ip"s :
"username": "",

"verbose": false,

"brightness step": 50,
"color_temperature_ step": 1000,
"default_group": 0

o

L

NOTE: If you know the IP address of your hub and/or if you have a username that you
would like to use, you may add either or both to the preceding relevant lines. If not,
when the Skill is first used, it will attempt to find the hub on your network. If there are
multiple hubs, it will take the first one it finds and will create a default user and record
the IP address.

On your first run, if you did not supply a username, when you say any phrase that gets
routed to this Skill (i.e., “Turn off my lights”), you will be asked to push the button on
the top of your Philips Hue hub. This will create a user on the hub for this application.

Save and exit the nano editor, and restart the Mycroft server for the new configuration

changes to take effect.

I provided both the Hue bridge IP address and username. The system turned on the
Hue light when I spoke the phrase “Hey Mycroft, turn on the workplace light.”

This result confirmed that the Mycroft Hue Skill was working correctly and that I had
successfully created a simple HA application for the Mycroft system. You can add
similar HA Skills following the same procedure I just detailed. Additional HA skills are
continually being added to the Mycroft Skills repository by the open-source community

developers.

SUMMARY

The chapter began with an introduction to the Mycroft, which is a completely open-
source artificial intelligence (AI) project involving a personal voice assistant. I
examined its structure and supporting hardware. The Mycroft team offers a hardware
device for sale named Mark I that contains a RasPi 3 that hosts the Mycroft software
package. The open-source Mycroft software can also be installed on your RasPi 3, in
which case it is known as Picroft. Finally, there is a Mycroft version that can be hosted

on Android devices.

I reviewed how to install Mycroft on a RasPi. In the process of this installation, I
uncovered and resolved an issue in which the software did not discover the USB
microphone. I successfully demonstrated that the Picroft installation worked as

expected.

The subject of Mycropft Skills was discussed next, and a Mycroft GPIO Skill was
installed on the RasPi. A simple test using both a LED and a push button proved that
the skill was installed successfully. A detailed review of 26 different Mycroft Skills
followed the GPIO skill discussion.

The chapter concluded with an HA Skill installation using a Philips Hue light. The light

was turned on and off using voice commands.

Fuzzy Logic and Home Automation

THIS CHAPTER WILL SHOW HOW to apply fuzzy logic (FL) concepts in an HA
system. I will take a practical approach in the discussions using the RasPi in FL
demonstrations while constantly introducing and explaining the different concepts and

components that constitute an FL system.

A SIMPLE HVAC FL SYSTEM

This section concerns a very basic HVAC system that uses an FL controller that can
only operate in either a heating or cooling mode. This is a deliberate oversimplification
of a real-world system that allows me to more easily explain how FL can be integrated

into a practical HA system.

Figure 8-1 is block diagram of an HVAC system that employs a traditional feedback
control scheme. The entire system, as it is shown in the figure, is known as a plant
using control system terminology. This configuration or topology is known as feedback
control because a sensor in the living space measures the ambient room temperature,
which the controller then uses to compare against a set point or target temperature. If
the sensor temperature is higher than the target temperature, a cooling command is
sent to the HVAC system; otherwise, a heating command is sent. In reality, there is a
limited temperature region where neither heating nor cooling commands are sent. This
is the comfort zone, where users in the living space require no interaction with the

HVAC system. The FL system will handily incorporate a comfort zone.

https://avxhm.se/blogs/hill0

mounir
Typewriter
https://avxhm.se/blogs/hill0

Living Space
Heating
HVAC System Cooling sensor
Heat Command Cool Command

Controller
(Thermostat)

Traditional HVAC system block diagram.

Parts List
Item Model Quantity Source
RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com
LED Commodity 4 adafruit.com
330-ohm (Q)), Ye-watt (W) resistor Commodity 4 adafruit.com

The FL controller (FLC) replaces the traditional feedback controller in the plant. It also
requires a temperature sensor, but the decision process about choosing heating,
cooling, or none is significantly different from a simplistic comparison with a single

target value.

It will be useful at this point to first discuss some fundamental FL concepts before

proceeding with an FLC demonstration.

BASIC FL CONCEPTS

FL uses the phrase linguistic terms to describe system or plant variables that originate
in the non-FL domain. To understand what linguistic terms means, it is useful to think
of how you would describe a comfortable room temperature. You might say 72°F is
comfortable. However, someone else might say that 70°F is uncomfortable. In fact, it is
entirely possible to survey a large, randomly selected group of people and discover that
comfortable temperatures could range from 50 to 90°F. Admittedly, there would be

very few people who would find the extreme temperatures to be comfortable.

Figure 8-2 shows a graph of a membership function in which the vertical axis

represents membership in the range of 0 to 1.0 and temperature on the horizontal axis.
A value of 1.0 at a given temperature means that it is equal to 100 percent membership
within the function. Likewise, a temperature of 60°F intersects at a 0.5 membership
function value, which translates to that specific temperature having a 50 percent
membership function. This graph represents the translation of the plant temperature

variable to the FL comfortable temperature linguistic term.

1.0 -
0.8 -

o

% Comfortable

8 06

£

—

s 0.4

@

o

2 02-

o
09 | I | |

50 60 70 80 90

Input Variable Value

Comfortable temperature membership function.

Other membership functions can be similarly created to encompass the following

linguistic terms:
m Cold
m Comfortable
m Hot

It would be useful at this point to slightly change the traditional HVAC system design to
one that incorporates an FLC. Figure 8-3 shows a generic FL. HVAC system that
incorporates a new component—a control subsystem. The control subsystem block
represents the additional hardware/software required to implement any new HVAC

features resulting from using an FL approach.

Living Space
Heating
HVAC System "
Cooling | o
»
Control Fuzzy Logic Controller
Subsystem €— Target Temperature

Generic FLC HVAC block diagram.

There is a very specific procedure to be followed to implement an FL system, which is

discussed in the next section.

FL IMPLEMENTATION PROCEDURE

This implementation procedure creates an FL algorithm, which is a step-by-step
process encompassing all the necessary components to generate a workable FL
solution. Table 8-1 shows the seven major steps involved in creating an FL algorithm. I

will explain each step in-depth after the table.

Table 8-1 Fuzzy Logic Algorithm Steps

Step | Step Name Step Description

T Initialization Define FL linguistic
variables and terms

2 Initialization Generate membership
functions

3 Initialization Create expert rule set

4 Fuzzification Convert crisp input data

into fuzzy set using
membership functions

5 Inference Evaluate fuzzy set
according to expert rule
set

6 Aggregation Combine rule results to

form a fuzzy output set

7 Defuzzification | Convert fuzzy output set
to crisp output values

STEP 1. The linguistic variables are symbols that represent system inputs and outputs.
They are not numerical values but are usually natural-language words or phrases from
a language such as English. Linguistic variables are further decomposed into a set of
linguistic terms for both inputs and outputs. There is only one input variable, which is
named roomTemp for this simple HVAC demonstration. There is also only one output
variable, named controlOut, which is the command that goes to the control

subsystem.

The room temperature input variable is further classified (decomposed) into a series of

linguistic terms that are appropriate for the users and the HVAC environment:
m Cold

m Comfortable

m Hot

The controlOut output variable is further classified (decomposed) into a series of

linguistic terms that are appropriate for the HVAC control subsystem:

m Heat
m No action
m Cool

STEP 2. Membership functions are prerequisites for both the fuzzification and
defuzzification steps. Membership functions map nonfuzzy input values to fuzzy
linguistic variables for the fuzzification step. In a similar manner, a membership
function maps fuzzy variables to nonfuzzy output values for the defuzzification step.
Basically, membership functions quantify linguistic terms. Figure 8-4 shows the
membership function graphs for the input variable roomTemp, which encompasses all
the linguistic terms assigned to the input variable.

1.0
087 Cold Comfortable Hot
0.6 -

0.4

0.2 +

Degree of Membership

0.0

| I | I
50 60 70 80 90

Input Variable Value

roomTemp membership functions.

There can be many basic shapes to membership functions, but the triangular shape
seems to be quite common, at least when it comes to capturing human behavior

associated with the input variable.

Figure 8-5 is a graph showing the control output membership functions encompassing
all three linguistic terms comprising the control0Out output variable. This figure has
triangular membership function shapes, which is fairly common when configuring

output control functions.

1.0 5
0.8
£ Heat No Action Cool
[
2 06
£
=
s 0.4
@
g
g 0.2
al
&2 | | | |
50 60 70 80 90

Input Variable Value

controlOut membership functions.

STEP 3. A very important component in any FL system is an expert decision system.
The purpose of the expert system is to generate appropriate control actions based on
the fuzzified input variables. The expert system uses the classic modus ponens form if
<condition>, then <conclusion>, where decisions are based on the state or value of
input variable(s). The following are the rules implemented for this simple HVAC

demonstration:

1. If (roomTempis cold) and (targetTemp iS comfortable), the controlout

command is heat.

2. If (roomTemp is hot) and (targetTemp is comfortable), then the controlout

command is cool.

3. If (roomTempis comfortable) and (targetTemp iS comfortable), then the

controlOut command is no—-action.

These three rules apply both to the input and the output variables. How the rules are

enforced is discussed in step 5.

STEP 4. This step requires that the crisp roomTemp input variable be fuzzified using
the previously defined membership functions. How this happens depends on the
computer language/library used in the actual FL system implementation. I will be using
the Python language along with the Python SK library for this simple HVAC
demonstration. I will provide detailed comments on the fuzzication process within the

code listing when it is shown later in this chapter.

STEP 5. This step is all about applying the if, then inferential rules and paying

attention to using only related linguistic terms. For instance, rule 1 is

If (roomTemp is cold) and (targetTemp is comfortable), the controlout

command is heat.

Applying this rule is trivial because there is only one input linguistic term that needs to
be evaluated. You will see that rule application becomes more complex when additional
linguistic terms are simultaneously evaluated. I will explain later the complex
evaluations in the complex HVAC demonstration. For right now, this simple
demonstration only relies on a one-to-one rule application. For example, if the
targetTemp input variable is at 55°F, then, referring to Figure 8-4, you can see that
the cold membership function value is approximately 0.7 and the comfortable
membership function value is approximately 0.3. The highest or maximum
membership value is always used when there are two membership functions being
evaluated for a single crisp input variable. This means that the action associated with
the cold membership function will be acted on using a 0.7 value for an action level to
be applied to the HVAC heating mode. I will further expand on what I mean by an
action level when I go through the complex HVAC example. For right now, simply

construe the level to equate to an approximate 70 percent output variable level.

You should also easily see that an input roomTemp of 70°F would mean that it equates
to a 1.0 comfortable membership, which causes the no-action mode to be entered
for the HVAC system.

A final example of an input roomTemp of 80°F would mean that it equates to a 0.5
membership value for both the comfortable and the hot membership functions. In a
case such as this, you would have to provide some sort of tie-breaker function to select
one linguistic term over another. It probably doesn’t make much of a difference
regarding which term is selected, but I would likely favor the no-action mode versus

the cool mode, just to economize on energy consumption.

The aggregation step is next, where all the rules have been applied to all the

membership functions.

STEP 6. The maximum operator is normally applied to the output variable membership
functions for this aggregation step. Figure 8-6 shows the combined output variable

graph, which encompasses all three control modes.

1.0

0.8

0.6 -

0.4

Degree of Membership

0.2 +

0.0

| I | I
50 60 70 80 90

Combined Output Variable

Combined output variable graph.
There is only one more step in the FLS algorithm, and that is defuzzification.

STEP 7. Defuzzification is the process in which a real-world crisp output value is
generated that can be acted on using the appropriate mode decided by the expert
system. The following six mathematical techniques are commonly used for

defuzzification:

m Centroid of area

m Bisector of area

m Smallest of maximum
m Largest of maximum
m Mean of maximum

m Weighted average

Figure 8-7 graphically demonstrates how values for each method are chosen using an

arbitrary aggregation membership function.

1.0

I

|
o
= 0.8 E
]
pe! 0.6 [Total Area

Bl I
; f o/
= |
5 0.4+ |
v I
2 I
o 0.2 -4 ;
o I
0.0 | ! | | |
50 60 / 70 80
Largest of Max ‘
\ . Output Variable Value
Smallest of Max Bisector of Area
Mean of Max

Defuzzification methods.

The centroid defuzzification method is used most commonly because it is very accurate.

It calculates the center of the area under the curve of the membership function. This
method can require significant computational processing, especially for complex

membership functions. The centroid equation is
z, = Jp(x)xdx /[(x)dx

where z, is the defuzzified output, ; represents a membership function, and x is an
output variable. Bisector defuzzification uses vertical lines that divide the area under

the membership curve into two equal areas where
Joh, (X)dx = [P (x)dx

The mean-of-maximum (MOM) defuzzification method uses the average value of the

aggregated membership function outputs:

e v W,
— i

=0 Z'=
)

The smallest-of-maximum defuzzification method uses the minimum value of the

aggregated membership function outputs:
e Py Qe
Z€1x | u(x) = min p(w)

The largest-of-maximum defuzzification method uses the maximum value of the

aggregated membership function outputs:

z,€tx|u(x) = max p(w)}

The weighted-average defuzzification method calculates the weighted sum of each fuzzy
set. The crisp value is set according to the weighted values and the degree of

membership for fuzzy output as determined by the following formula:

, = L)W,
T In(),

where is the degree of membership in output singleton i, and W; is the fuzzy output

weight value for the output singleton i.

The defuzzification step completes the seven-step discussion of how to create an FL
solution. The next section is a presentation of a complete Python solution for the simple
HVAC demonstration.

Python Script for a Simple HVAC System

The initial step when creating a new program or script is to list the requirements or
what is expected or desired to happen when the program is run (executed). Accurately
specifying requirements is a key factor in how you can determine whether you have
been successful in generating a workable problem and/or project solution. After careful
consideration, I developed the following requirements for a Python script that would

accurately simulate a simple HVAC system:

m Two input variables. roomTemp for the actual room temperature, and

targetTemp for the desired or set-point temperature.

m One output variable. controlout to send a defuzzified numeric value to a

simulated control subsystem.

m LED displays. Three LEDs that indicate the output modes of heat, cool, and no-

action.
m Keyboard entries. roomTemp and targetTemp.
m Variable display. controlOut numeric value.

You will first need to do some configurations and install some Python libraries in

preparation to enter and run the script. Enter the following commands at the command

line to update the Raspbian distribution and install the numpy, scipy, and matplotlib

libraries:
sudo apt-get update
sudo apt-get install python-numpy

NOTE: The numpy library may already be installed, so all you will see is a message

stating that the latest version is already installed.
sudo apt-get install python-scipy
sudo apt-get install python-matplotlib

The skfuzzy library, which contains all the Python fuzzy software, is somewhat more
complex to install. You first need to clone the software from the GitHub website
(https://github.com/scikit-fuzzy/scikit-fuzzy.git). However, you will need the git

application to do this. Install git by entering this command:
sudo apt-get install git

You will then need to clone the skfuzzy software once git is installed by entering this

command:

sudo git clone https://github.com/
scikit-fuzzy/scikit-fuzzy.qgit

The cloning operation automatically unzips all the skfuzzy software into a new
subdirectory named scikit-fuzzy located in the Home directory. Enter the following

commands to set up the skfuzzy library:
cd scikit-fuzzy
sudo python setup.py install

You will see a lot of dialog scroll by as the skfuzzy installation progresses. You should be

ready to enter and execute fuzzy Python scripts after the installation completes.

The following sections all concern going through the seven FL implementation steps.
Just note that I did not follow the step order described in Table 8-1. It is not critical that

the steps be done in any specific order but only that they all are eventually completed.

Generating the Expert System Rules

Six rules are required to accommodate all the combinations of room temperature and
target temperature linguistic terms that require an action. All the rules for no-action are

ignored. These six rules are as follows:

1. If roomTempis cold and targetTemp is comfortable, then controlout is

heat.
2. If roomTempis coldand targetTemp is hot, then controlOut is heat.

3. If roomTempis comfortable and targetTemp is cold, then controlOut is

cool.

4. If roomTempis comfortable and targetTemp is hot, then controlOut is

heat.
5. If roomTemp is hot and targetTemp is cold, then controlOut is cool.

6. If roomTemp is hot and targetTemp is comfortable, then controlOut is

cool.

Table 8-2 is a summary matrix detailing the control commands for all combinations of

linguistic variables for both room and target temperatures.

Table 8-2 Matrix of Command Actions for Room and Target Temperature Linguistic

Variables
Room Target Temperature
Temperature | (targetTemp)
(roomTemp) cold comfortable | hot
cold no-action | heat heat
comfortable cool no-action heat
S cool cool no-

action

At this point, it is time to discuss the fuzzification step, once the rule set has been

generated.

Fuzzification

The following Python code segment sets up the input variable ranges and the input and

output membership functions:

import numpy as np
import skfuzzy as fuzz

Generate universe variables

room and target temperature range is 50 to 90
same for the output contrel variable
room_temp = np.arange(50, 91, 1)

target temp = np.arange(50, 91, 1)

control temp = np.arange(50, 91, 1)

Generate triangular fuzzy membership functions

room temp lo = fuzz.trimf(room temp, [50, 50, 701])
room_temp md = fuzz.trimf(room_ temp, [50, 70, 90])
room_temp hi = fuzz.trimf(room_temp, [70, 90, 90])

target temp lo fuzz.trimf(target temp, [50, 50, 70])

target temp md fuzz.trimf (target temp, [50, 70, 90])
fuzz.trimf (target temp, [50, 90, 901])
control temp lo = fuzz.trimf(control temp, [50, 70, 90])

fuzz.trimf (control temp, [70, 90, 90])

target temp hi

Il

control temp hi

The next step in the algorithm is to determine the fuzzified values based on values for
room and target temperatures. Based on project requirements, the user will be asked to
input both values. In a real-world FL control system, the target temperature would be
set manually, whereas the room temperature would be read from a sensor. However, to
simply things in this simple project, both inputs will be set manually. The following

code accepts user inputs and then fuzzifies those inputs:

Get user inputs
room_temp_in = raw_input('Enter room temperature 50 to 90')
target_temp_in = raw_input('Enter target temperature 50 to 90')

Calculate degrees of membership
room_temp level lo = fuzz.interp membership(room_ temp, room temp lo, float(room temp in))
room_temp level md = fuzz.interp membership(room_ temp, room temp md, float(room temp in))

room_temp_level hi = fuzz.interp membership(room_temp, room temp_hi, float(room_temp_in))

target temp level lo = fuzz.interp membership(target temp, target temp lo,
float(target_temp in))

target temp level md = fuzz.interp membership(x target temp, target temp md,
float(target_temp_in))

target_temp_level_hi = fuzz.interp_membership(x_target_temp, target_temp_ hi,
float(target temp in))

The next step is the inference step, where all the rules are applied and membership

functions combined.

Inference

The following code segment applies the six rules and combines all the membership

functions:

Apply rule 1: if room_temp is cold and target temp is comfortable then command is heat
The 'and' operator means to take the minimum by using the 'np.fmin' function

active rulel = np.fmin(room temp level lo, target temp level md)

Combine with hi control membership function using 'np.fmin’

control activation 1 = np.fmin(active rulel, control temp hi)

Next iterate through all five remaining rules

#Apply rule 2: if room temp is cold and target temp is hot then command is heat
active_rule2 = np.fmin(room_temp_ level lo, target_ temp_level_ hi)

Combine with hi control membership function using 'np.fmin'

control activation 2 = np.fmin(active rule2, control temp hi)

#Apply rule 3: if room_temp is comfortable and target temp is cold then command is cool
active_rule3 = np.fmin(room_temp_level md, target_temp_level lo)

Combine with lo control membership function using 'np.fmin’

control activation 3 = np.fmin(active rule3, control temp lo)

#Apply rule 4: if room_temp is comfortable and target temp is heat then command is heat
active_rule4 = np.fmin(room_ temp_ level md, target_temp_ level hi)

Combine with hi control membership function using 'np.fmin’

control activation 4 = np.fmin(active rule4, control temp hi)

#Apply rule 5: if room_temp is hot and target temp is cold then command is cool
active rule5 = np.fmin(room_ temp level hi, target temp level lo)

Combine with lo control membership function using 'np.fmin’
control_activation 5 = np.fmin(active_rule5, control_temp lo)

#Apply rule 6: if room temp is hot and target temp is comfortable then command is cool
active_ruleé = np.fmin(rcom_temp_level hi, target_temp_level md)

Combine with lo control membership function using 'np.fmin’

control activation 6 = np.fmin(active rule6, control temp lo)

This completes the rule application and membership set combinations. The next step to

consider is the aggregation step.

Aggregation

The aggregation statement is long because of the six control activation values.

aggregated = np.fmax(control_activation_ 1,
Ebnktrol metivation 2,
control activation 3,
control activation 4,
control_ activation_5,

control activation 6)

You may notice that in the actual listing below, I had to break up this statement into a
series of statements because the fmax function can only take two arguments instead of

the six shown above.

It is time for the defuzzification step once the aggregation is completed.

Defuzzification

The centroid method will be used for this project. The following code defuzzifies the

output control value:

Calculate defuzzified result using the

method of centroids

control value = fuzz.defuzz(control temp,
aggregated, 'centroid')

Now simply display the crisp output value.

print control value

Simple HVAC System Python Script

The following is the complete listing for an initial Python script that I named
simpleHVAC.py. It is a compilation of all the previous code snippets along with some
“glue” code to ensure that all the parts function well together. However, this listing does

not include any code for controlling the LEDs, which are intended to show the selected

active output control mode. That script will be shown after the results of this initial

script are displayed and analyzed.

import numpy as np
import skfuzzy as fuzz

Generate universe variables

* room and target temperature range is 50 to 90
* same for the output control wariable
¥_room_temp = np.arange(50, 91, 1)

¥_target temp np.arange(50, 91, 1)

¥_contrel_temp = np.arange(50, 91, 1)

Generate triangular fuzzy membership functions

room_temp lo = fuzz.trimf(x room_temp, [50, 50, 70])
room_temp md = fuzz.trimf(x_room_temp, [50, 70, 901])
room_temp_hi = fuzz.trimf(x_room_temp, [70, 90, 90])
target temp lo = fuzz.trimf(x_target_temp, (50, 50, 70])
target_temp md = fuzz.trimf(x_target_temp, [50, 70, 90])

target_temp_hi = fuzz.trimf(x_target_temp, [50, 90, 90])
control_temp_lo = fuzz.trimf(x_control_temp,[50, 50, 70])
control temp md = fuzz.trimf(x control temp,[50, 70, 90])
control temp hi = fuzz.trimf(x control temp,[70, 90, 90])

Get user inputs
room_temp = raw_input('Enter room temperature 50 to 90: ')
target_temp = raw_input('Enter target temperature 50 to 90: ')

Calculate degrees of membership

room_temp_level lo = fuzz.interp membership(x_room_temp, room_temp lo, float(room_temp))
room_temp_level md = fuzz.interp_membership(x_room_temp, room_temp_md, float(room_temp))
room_temp level hi = fuzz.interp membership(x_ room temp, room temp hi, float(rocom_ temp))

target_temp level lo = fuzz.interp_membership(x_target_temp, target_temp_lo,
float(target_temp))

target_temp level md = fuzz.interp_membership(x_target_temp, target_temp_md,
float(target_temp))

target_temp level hi = fuzz.interp membership(x_target_temp, target_temp_hi,
float(target temp)})

Bpply all six rules

rule 1: if room_temp is cold and target temp is comfortable then command is heat
active_rulel = np.fmin(room_temp level lo, target_temp level md)

control activation 1 = np.fmin(active rulel, control temp hi)

rule 2: if room_temp is cold and target temp is hot then command is heat
active rule2 = np.fmin(room_temp level lo, target_ temp_ level hi)
contrel activation_2 = np.fmin(active rule2, contrel temp hi)

rule 3: if room_temp is comfortable and target temp is cold then command is cool
active rule3d = np.fmin(rcom_ temp level md, target temp level lo)
control_activation_3 = np.fmin(active_rule3, control_temp_lo)

rule 4: if room temp is comfortable and target temp is heat then command is heat
active rule4 = np.fmin(rcom_temp level md, target temp level hi)
control activation 4 = np.fmin(active ruled, control temp hi)

rule 5: if room temp is hot and target temp is cold then command is cool
active rule5 = np.fmin(room_ temp level hi, target temp level lo)
control activation 5 = np.fmin(active rule5, contrcl temp lo)

rule 6:; if room_temp is hot and target temp is comfortable then command is cool
active rule6 = np.fmin(room temp level hi, target temp level md)
control activation & = np.fmin(active rulef, control temp lo)

RAggregate all six output membership functions together
Combine outputs to ease the complexity as fmax() only as two args
cl

np.fmax(control_activation_ 1, contreol_ actiwvation 2)
¢2 = np.fmax({control activation 3, control activation 4)
¢3 = np.fmax(control_activation 5, control_activation 6)
¢4 = np.fmax(c2,c3)

aggregated = np.fmax(cl, c4)

Calculate defuzzified result using the method of centroids
control walue = fuzz.defuzz(x_control_ temp, aggregated, 'centroid’)

Display the crisp output wvalue
print control value

Testing the Simple HVAC System Script

Run the script by entering the following command at the terminal prompt in the home

directory:
python simpleHVAC.py

Table 8-3 shows the results of testing the control script using a representative range of
room and target temperatures that were input manually. Note that all table entries are

in °F.

Table 8-3 Simple HVAC System Script Test Results

Target Room Command
Temperature Temperature Output
50 50 70.00
60 5.6
70 56.67
80 57.78
90 56.67
60 50 - PR
60 70.00
70 66.40
80 66.40
90 57.78
70 50 83.33
60 82.22
70 82.22
80 70.00
90 56.67
80 50 83.33
60 8222
70 B3.33
80 70.00
90 57.78
90 50 83.33
60 82.22
70 83.33
80 82.22
90 70.00

I carefully studied these results and derived these conclusions from the test data:
m A command value of approximately 65 to 75 means no action.
m A command value of approximately 82 to 83 means that heating is required.

m A command value of approximately 56 to 65 means that cooling is required.

The no action range was approximately +4 surrounding the target temperature. This is
a good result because it minimizes system operation while still maintaining the desired

room temperature.

LED Mode Indicators

I next made a few simple modifications to the simple HVAC system script that would
light one of three LEDs depending on whether heating, cooling, or no action were
determined based on user input. You should use the Fritzing diagram in Figure 8-8 to

set up the LEDs to indicate the selected control mode.

heat cool no-action

|||||||||||||||||||||||||||||||||||

iiiiiiiiii
|||||||||||||||||

fritzine

Fritzing diagram for control mode indicator LEDs.

The following listing incorporates the LED modifications to the existing Simple HVAC
system script (simpleHVAC.py). I renamed it simpleHVAC _LED.py, and it is available
from this book’s companion website,

www.mhprofessional.com/NorrisHomeAutomation.

import numpy as np
import skfuzzy as fuzz
import RPi.GPIO as GPIOD
import time

GPIO. setmode (GPIO.BCH)

prevent unnecessary GPI0O warnings when re-running the script
GPIO.setwarnings(False)

configure BCM GPIO pins 13, 19 and 26 as outputs
GPIO.setup (13, GPIO.OUT)
GPIO.setup({l9, GPIO.OUT)
GPIO.setup(26, GPIO.OUT)

set all LEDs to LOW

GPIO.output (13, GPIO.LOW)
GPIO.output (19, GPIO.LOW)
GPIO.output (26, GPIO.LOW)

Generate universe variables

room and target temperature range is 50 to 20
same for the output control variable
¥_room_temp = np.arange (50, 91, 1)
X_target_temp np.arange (50, 91, 1)
Xx_control_temp np.arange (50, 91, 1)

Generate fuzzy triangular membership functions

room_temp_lo = fuzz.trimf (x_room_temp, [50, 50, 70])
room_temp_md = fuzz.trimf (x_room temp, (50, 70, 90])
room_temp_hi = fuzz.trimf (x_room_temp, (70, 20, 90])
target_temp lo = fuzz.trimf(x_target temp, [50, 50, 70))
target_temp md = fuzz.trimf(x_target_temp, ([50, 70, %0])}
target_temp_hi = fuzz.trimf(x_target_temp, [50, 90, 901)
control_temp_lo = fuzz.trimf (x_control_temp, [50, 50, 70])
control_temp_md = fuzz.trimf (x_control_temp, [50, 70, 20])

control_temp_hi = fuzz.trimf(x control_temp, [70, 90, 90])

Get user inputs
room_temp = raw_input ('Enter room temperature 50 to 90: ')
target_temp = raw_input ("Enter target temperature 50 to 90: ')

Calculate degrees of membership

room_temp level lo = fuzz.interp membership(x_room_ temp, room_temp lo, float{rocom temp))
room_temp level md = fuzz.interp membership(x_room_temp, room_temp md, float(room temp))
room_temp level hi = fuzz.interp membership(x _room temp, room_ temp hi, float({rocom_temp))

target_temp_level lo = fuzz.interp_membership (x_target_temp, target_temp_lo,
float (target_temp))

target_temp_level md = fuzz.interp membership(x_target_temp, target_temp_md,
float (target_temp))

target_temp level hi = fuzz.interp membership(x_target_temp, target_temp hi,
float (target_temp))

Apply all six rules

rule 1: if room_temp is cold and target temp is comfortable then command is heat
active _rulel = np.fmin(room_temp level lo, target temp level md)
control_activation_l = np.fminf{active_rulel, control_temp_hi)

rule 2: if room_temp is cold and target temp is hot then command is heat
active_rule2 = np.fmin(room_temp_ level lo, target_temp level hi)
control_activation 2 = np.fmin{active_rule2, control_temp_hi)

rule 3: if room_temp is comfortable and target temp is cold then command is cool
active_rule3 = np.fmin{room_temp_level_md, target_temp_level_lo)
control_activation_3 = np.fminf{active_rule3, control_temp_lo)

rule 4: if room_temp is comfortable and target temp is heat then command is heat
active_ruled = np.fmin(room temp level md, target temp level hi)
control_activation_4 = np.fmin(active_ruled4, control_temp_hi)

rule 5: if room_temp is hot and target temp is cold then command is cool
active_ruleS = np.fmin(room_temp_level_ hi, target_temp_level_lo)
control_activation 5 = np.fmin(active_ruleS5, control_temp lo)

rule 6: if room temp is hot and target temp is comfortable then command is cool
active_rules = np.fmin(room_temp_ level hi, target_temp_level_ md)
control_activation_é = np.fmin{active_ruleé, control_temp_lo)

Aggregate all six output membership functions together

Combine cutputs to ease the complexity as fmax() only as two args
cl = np.fmax(control_activation_l, control_activation_2)

c2 = np.fmax(control_activation_3, control_activation_4)

¢3 = np.fmax(control_activation_5, control_activation_g)

c4 = np.fmax(c2,c3)

aggregated = np.fmax(cl, c4)

Calculate defuzzified result using the method of centroids
control_value = fuzz.defuzz(x_control_temp, aggregated, ‘centroid')

Display the crisp output value
print control_wvalue

following limit wvalues taken from test data analysis
no-action mode
if control_value = 68 and control_wvalue < 82:
GPIO.output (26, GPIO.HIGH)
time.sleep(5)
GPIO.output (26, GPIO.LOW)

heat mode
elif control_walue > 82 and control_value <« 84:

GPIO.output (12, GPIO.HIGH)

time.sleep(5)
GPIO.output (13, GPIO.LOW)

cool mode

elif control_walue > 56 and control_value < 68:
GPIO.output (1%, GPIO.HIGH)
time.sleep(s)
GPIO.output (192, GPIO.LOW)

error, default to the no-action mode
else:
print 'out of range value calculated®
print 'no-action mode’
GPIO.output (26, GPIO.HIGH)
time.sleep(5)
GPIO.output (26, GPIO.LOW)

Figure 8-9 shows the physical setup with the three control LEDs connected to a

solderless breadboard using a T-Cobbler interface adapter.

ter—Pigs

bt
o
> -
-
[
o
0
o
n
L]
(=4
i
2

Adatruit T-Cobb

Physical setup.

Test Run for the Mode Indicator LEDs

I used a set of input values taken from Table 8-3 to test the LED mode indication

system. The values used and the appropriate associated modes are shown in Table 8-4.

Table 8-4 LED Indicator Test Values

Room Target Control
Mode Temperature | Temperature | Value
Heat 60 80 82.22
Cool 80 60 66.40
No action | 60 60 70.00

The modified script is run by entering the following command at the terminal prompt

in the home directory:
python simpleHVAC LED.py

I ran the script three times, entering the values for each control mode, and

subsequently confirmed that the LED for that mode lighted for 5 seconds as expected.

This test completes the simple HVAC system demonstration. However, it may be
apparent that the GPIO control design can be adapted to operate real-world HVAC
control lines. The easiest way is to just substitute an optocoupler for a LED. Figure 8-10

shows an example schematic for this change.

3300

RasPi GPIO Pin N\)\

3.3V

5V

Opto-Coupler

e
»¥
7\

24VAC

= 5V Relay ‘ {‘
to HVAC System

Optocoupler control schematic.

In this circuit, a RasPi GPIO 3.3-V line is connected directly to an optocoupler, which
has it output connected to a single-pole, single-throw (SPST) relay. The relay contacts
control a 24-VAC line, which is the typical control voltage used in HVAC systems. You
could even control 120/240-VAC HVAC lines, if necessary, using this scheme, provided
that the relay contacts are rated to handle the higher voltage.

The simple HVAC system demonstration has now been completed, and you should have
gained some insight into and appreciation for how FL can effectively implement a good
solution to a common application such as HVAC. The next demonstration expands this
simple project by introducing additional complexity to more closely model real-world
HVAC applications.

COMPLEX HVAC SYSTEM DEMONSTRATION

The preceding simple demonstration used only two input parameters to control an
HVAC system that had three operational modes. This situation is really an
oversimplification of what is possible to achieve using FL technology. There are a
number of other factors, both inputs and outputs, that have an impact on the

operations of a real-world HVAC system including, but not limited to
m Humidity

m Time of day

m Occupancy

m Supply airflow

m Exhaust airflow

m Makeup air

m Outside air temperature and humidity

m Economizer modes

You likely realize that these factors interact with each other in complex ways and that it
is not a trivial task to generate appropriate membership function and expert system
rules. In fact, the degree of complexity goes up exponentially with every new factor
introduced into the FL control scheme. In the simple system demonstration, six rules
were required to accommodate all combinations of the input and output linguistic
terms that required an action. There theoretically should have been nine rules, but I
chose to ignore three rules, which were dedicated to the no action mode. Now, if one
more linguistic term had been added, let’s say one dealing with humidity, that would
have created the need for 25 rules. This large number is due to the added humidity
input and a separate control output—hence 5° = 25. It is not hard to imagine the

combinatorial “explosion” resulting from adding many of the factors just listed to an FL

system. Generating all the associated rules for many factors is a nontrivial task, which is
why it is called an expert rule set. Experts are really the only people having all the
knowledge on how the many system factors interact and what control actions are
required to achieve the desired results. Even experts will have a difficult time in
detailing hundreds of rules without errors or conflicts, which is why complex HVAC

system design is a challenging endeavor.

Although I am not an HVAC expert, I did attempt to modify the simple HVAC system
demonstration by adding a humidity input variable. Creating the linguistic terms and
membership functions was relatively simple because many data are available on the
Internet. Creating the expert rules was another issue, but I did find some online data
regarding how to control humidity in an HVAC system. I finally decided that I would
simply send control signals to a dehumidification diverter valve to control room
humidity levels. I explain in the next section how the valve works, along with some
other important background information on how humidity affects people. Applying this
information is key to creating meaningful membership functions as well as functional

and useful expert rules.

Humidity Control

Humidity levels have a significant effect on people occupying an air-conditioned space.
Humidity levels are quantified using the dew point, which is commonly defined as “the
temperature to which air must be cooled to become saturated with water vapor.” If air
at the dew point is further cooled, the airborne water vapor will condense to form liquid
water (dew). When air cools to its dew point through contact with a surface that is

colder than the air, water will condense on the surface.

Relative humidity is often confused with dew point. Relative humidity (RH) is defined
as “the ratio between the current amount of water vapor in the air at a given
temperature and the maximum amount of water vapor possible in the air at that
temperature.” It has units of percent, whereas dew point has temperature units. High
humidity in a building can have severe adverse effects beyond personal discomfort.
Condensation can occur in building cavities that would promote mold growth and/or

other moisture damage to the building or its furnishings.

The dew point is always lower than or equal to the ambient air temperature, which is
why dew or fog often occurs during the early morning hours when the air temperatures
are typically lowest and the dew point highest. Dew point is a very useful measure for
personal comfort and has been quantified as shown in Table 8-5. It should clear from

the table values that a dew point level 55 or less should always be proper objective in an

HVAC system.

Table 8-5 Dew Point versus Personal Comfort

Dew Point (°F) Human Comfort
<50 Pleasant

50-55 Comfortable
56-60 Noticeable

61-65 Sticky

66-70 Uncomfortable
71-75 Harsh

76+ Severe discomfort

Augmented Simple HVAC System

This HVAC software demonstration assumes that a dehumidification subsystem has

been installed in the plant and may be independently controlled aside from the heating

and cooling subsystems. This would mean that even if the room temperature was in the

comfortable membership function, the dehumidification could be activated if the room

dew point was in an uncomfortable range. Figure 8-11 shows a representative generic

air-conditioning system diagram that has a dehumidification feature.

Dehumidification

Diverter Valve

Inside Heat Exchanger

To Occupied
Space

‘ 1 Outside Condenser

(A Cool Hot—(—
Air Air
—> <
Variable _ > s
Speed —» A/CPlenum A/CPlenum «—
e -—
—> <
Thermal
Expansion
Valve e >
Refrigerant Compressed
Vapot Compressor Vapor
<«—— Liguid Refrigerant
R114

Variable
Speed

Regulator
Valve

Air-conditioning system.

Notice in the figure that there is a dehumidification diverter valve that can divert the
cool airflow coming from the inside heat exchanger to the hot airflow coming from the
outside condenser. While this seems illogical at first glance, it does make sense because
warming the cool air slightly will reduce the overall moisture content, thus lowering the
dew point. Many modern air-conditioning systems provide this feature and call it a

“dry” mode of operation. In reality, it is a dehumidification operation.

The augmented system would need an additional sensor to measure dew point levels
within the room. Then, if the dew point was at an undesirable level, all appropriate
rules would be invoked. These rules would likely include standalone dehumidification,
which would mean just operating a diverter valve to heat the cooled air in the air-
conditioner plenum so that the dew point could naturally rise due to the increased
capacity of the warmer air to retain moisture without it condensing. I added a few rules
dealing with dehumidification just to illustrate the process, but I am no HVAC expert,
as previously stated, and will have most likely left out some important rules. In any
case, the software will query the user to enter both the room and target dew points, in
addition to both room and target temperatures. I now need to expand the FL
membership functions and add several expert rules before demonstrating a complex

HVAC system simulation.

Additional Membership Functions and Expert Rules

Figure 8-12 shows a typical humidity membership function graph, which reflects how
people react to humid conditions. The input variable for this graph is the dew point,
and the membership values shown are in accord with the values shown in Table 8-5.
Three triangular membership functions are shown in the figure, which are quite similar

to the three original room temperature membership functions.

1.0

0.8 -
2 Low Medium High
v
8 06
&
—
w04
@
g
g 024
o
09 | l | |
30 40 50 60 70

Input Variable Value

Humidity membership functions.

I next needed to create some rules on how to handle the new dew point input variable.
After some considerable thought, I decided that a straightforward solution was best to
control the room humidity. In case of too high humidity, the only output control
available would be to open the dehumidification diverter valve and direct already
cooled air to the warm output condenser airflow, as I said in the preceding section. The
only caution I had was that the room should already been cooled or heated to the target
temperature. Otherwise, the system could be set in an unstable state where neither the
room temperature nor the desired dew point could be achieved. This prerequisite
meant that the target temperature was already reached and that the no action mode
was in effect. Therefore, the dehumidification would only be enabled provided that the

system was in the no action mode.
I created two dehumidification rules based on the preceding discussion. These are

1. If the dew point is high and the target dew point is comfortable, then the command

is dehumidify.

2. Ifthe dew point is comfortable and target dew point is low, then the command is

dehumidify.

I also set up another LED to indicate when the dehumidification mode started.

Complex HVAC System Python Script

The simpleHVAC_LED script was modified extensively, incorporating the new rules
and membership functions just discussed. All the existing temperature control features
are still in place and functioning. The new script is named complexHVAC.py and is

available from this book’s website, www.mhprofessional.com/NorrisHomeAutomation.

import numpy as
import skfuzzy
import RPi.GPIO

import time

GPIO.setmode (GP

GPIO.setwarning

GPIO.setup (13,
GPIO.setup (19,
GPIO.setup (26,
GPIO.setup (21,

GPIO.output (13,
GPIO.output (19,
GPIO.output (26,
GPIO.output (21,

np
as fuzz
as GPIO

IO.BCM)

s(False)

GPIO.OUT)
GPIO.OUT)
GPIO.OUT)
GPIO.OUT)

GPIO.LOW)
GPIO.LOW)
GPIO.LOW)
GPIO.LOW)

Generate universe variables

room and target temperature range is 50 to 90

same for the
X room temp
X target temp

X control temp

Generate humi
x dew point
X target dew po

x control humid

Generate fuzzy

room temp lo
room temp md

room temp hi

target temp lo
target temp md
target temp hi

output control variable

= np.arange (50, 91, 1)

= np.arange (50, 91, 1)

= np.arange (50, 91, 1)

dity wvariables

np.arange (30, 71, 1)

int = np.arange (30, 71, 1)

= np.arange (30, 71, 1)

= fuzz
= fuzez

= fuz=z

= fuzz
= fuzz

= fuzez

membership functions
.trimf (x room temp,
.trimf (x room temp,

.trimf (x room temp,

.trimf (x target temp,
.trimf (x target temp,
.trimf (x target temp,

[50,
[50,
[70,

[50,
[50,
|50,

Bl
10,
20,

Bl
T,
90,

701)
9071)
90])

701)
90])
901)

control temp lo = fuzz.trimf(x_control_temp,[50, 50, 70])

control temp md = fuzz.trimf(x control temp, [50, 70, 90])

control temp hi = fuzz.trimf(x control temp, [70, 20, 90])

Generate humidity control membership functions

dew point lo =
dew point md =
dew point hi =

target dew point lo
target dew point md
target dew point hi

control dew point lo
control dew point md

control dew point hi

Get user inputs

fuzz.trimf (x dew point, [30, 30, 50])
fuzz.trimf (x_dew point, [30, 50, 70]1)
fuzz.trimf (x_dew point, [50; 70, F01%)

= fuzz.trimf (x_target dew point, [30, 30, 501)
= fuzz.trimf (x target dew point, [30, 50, 70])
= fuzz.trimf (x target dew point, [50, 70, 701)

= fuzz.trimf (x control humid, [30, 30, 50])
= fuzz.trimf (x control humid, [30, 50, 70])
= fuzz.trimf (x control humid, [50, 70, 70])

room_ temp = raw_input ('Enter room temperature 50 to 90: ')
target temp = raw_input ('Enter target temperature 50 to 90: ')
dew point = raw_input ('Enter room dew point 20 to 80: ')

target dew point = raw input ('Enter target dew point 20 to 80: ')

Calculate degrees of membership

room temp level lo =
room temp level md =

room temp level hi =

target temp level lo
float (target temp))
target temp level md
float (target temp))
target temp level hi
float (target temp))

dew point level lo =

dew point level md
dew point level hi

fuzz.interp membership(x room temp, room temp lo, float(room temp))
fuzz.interp membership(x room temp, room temp md, float(room temp))
fuzz.interp membership(x room temp, room temp hi, float(room temp))
= fuzz.interp membership(x_target temp, target temp lo,
= fuzz.interp membership(x target temp, target temp md,
= fuzz.interp membership(x target temp, target temp hi,
fuzz.interp membership(x dew point, dew point lo, float(dew point))

fuzz.interp membership(x dew point, dew point md, float(dew point))
fuzz.interp membership(x dew point, dew point hi, float(dew point))

target dew point level lo = fuzz.interp membership(x target dew point,

target dew point lo, float(target dew point))

target dew point level md = fuzz.interp membership(x target dew point,

target dew point md, float(target dew point))

target dew point level hi = fuzz.interp membership(x target dew point,

target _dew point hi, float(target dew point))

Apply all six rules for temprature control

rule 1: if room temp is cold and target temp is comfortable then command is heat

active rulel = np.fmin(room temp level lo, target temp level md)

control activation 1

= np.fmin(active rulel, control temp hi)

rule 2: if room temp is cold and target temp is hot then command is heat
active rule2 = np.fmin(room temp level lo, target temp level hi)

control activation 2 = np.fmin(active rule2, control temp hi)

rule 3: if room temp is comfortable and target temp is cold then command is cool
active rule3 = np.fmin(room temp level md, target temp level lo)

control activation 3 = np.fmin(active rule3, control temp lo)

rule 4: if room temp is comfortable and target temp is heat then command is heat
active rule4 = np.fmin(room temp level md, target temp level hi)

control activation 4 = np.fmin(active rule4, control temp hi)

rule 5: if room temp is hot and target temp is cold then command is cool
active rule5 = np.fmin(room temp lewvel hi, target temp level lo)

control activation 5 = np.fmin(active rule5, control temp lo)
rule 6: if room temp is hot and target temp is comfortable then command is cool
active ruleé = np.fmin(room temp level hi, target temp level md)

control activation 6 = np.fmin(active rule6, control temp lo)

Aggregate all six output membership functions together

Combine outputs to ease the complexity as fmax() only as two args
cl = np.fmax(control activation 1, control activation 2)

c2 = np.fmax(control activation 3, control activation 4)

c3 = np.fmax(control activation 5, control activation 6)

c4d = np.fmax(c2,c3)

aggregated = np.fmax(cl, c4)

Calculate defuzzified result using the method of centroids

control value = fuzz.defuzz(x control temp, aggregated, 'centroid')

Display the crisp output wvalue

print 'Temp control value = ', control value

dehumidification rules

rule 7: if dew point is high and target dew point is comfortable then command is dehumidify
active rule7 = np.fmin(dew point level hi, target dew point md)

control activation 7 = np.fmin(active rule7, control dew point lo)
#rule 8: if dew point is comfortable and target dew point is low then command is dehumidify
active rule8 = np.fmin(dew point level md, target dew point lo)

control activation 8 = np.fmin(active rule8, control dew point lo)

Aggregate the two dew point output functions

aggregate dp = np.fmax(control activation 7, control activation_8)

Defuzzify the dew point control

control dp = fuzz.defuzz(x control humid, aggregate dp, 'centroid')

Display the dew point control value

print 'Dew point control wvalue = ', control dp

no-action mode

if control value > 68 and contrcl value < 82:
GPIO.output (26, GPIO.HIGH)
time.sleep(5)
GPIO.output (26, GPIO.LOW)

cool mode

elif control value > 82 and control value < 84:
GPIO.output (13, GPIO.HIGH)
time.sleep(5)
GPIO.output (13, GPIO.LOW)

heat mode

elif control value > 56 and contrecl value < 68:
GPIO.output (19, GPIO.HIGH)
time.sleep(5)
GPIO.output (19, GPIO.LOW)

error, default to no-action mode

else:
print 'out of range value calculated'
print 'no-action mode'
GPIO.ocutput (26, GPIO.HIGH)
time.sleep(5)
GPIO.ocutput (26, GPIO.LOW)

dehumidification indicator

if control dp > 37 and contrcl value > 68 and control value < 82:
GPIO.output (21, GPIO.HIGH)
time.sleep(5)
GPIO.output (21, GPIO.LOW)

Test Run for the Complex HVAC System Script

I used a set of input values taken from Table 8-4 to test the Complex HVAC system. The

values used and the appropriate associated modes are shown in Table 8-6.

Table 8-6 Complex HVAC System Script Test Values

Target Room Target Dew Point
Mode RoomTemp | Temp Control Value | Dew Point Dew Point Control Value
Heat 60 80 82.22 60 50 n/a
Cool 80 60 66.40 60 50 n/a
No action 60 60 70.00 60 50 37.67

The modified script is run by entering the following command at the terminal prompt

in the Home directory:
python complexHVAC.py

I ran the script three times, confirming that each mode functioned correctly, as it did in
the simpleHVAC_LED script. In addition, I entered both room and target dew points
for each mode. The system did not light the dehumidification LED for either the heat or
cool modes, as it was designed to do. It did light when the no action mode was active.

That mode’s LED also lighted for 5 seconds as expected.

This test completed the complex HVAC system demonstration.

SUMMARY

This was a chapter on how to apply fuzzy logic (FL) concepts to HVAC applications. I
divided the chapter into two major parts, one dealing with a simple, temperature-

controlled HVAC system and the other one describing a more complex system.

I began the first part by reviewing basic FL concepts, which are key to understanding
how FL works. There was a comprehensive discussion regarding the FL

implementation procedure, which I closely followed to create an FL solution on a RasPi.

A complete Python script for a simple HVAC system that runs on a RasPi was presented
next. I went through all the necessary configuration and installation steps required to

get the RasPi ready to run the script. The script was then successfully tested.

I next modified the script to enable a set of LEDs to indicate which HVAC mode was

operational based on user inputs. This modification was also successfully tested.

The second part of the chapter dealt with designing and running a complex FL. HVAC
system. This was basically the same as the simple system except that many more input
and output variables were necessary. I chose to add only one input and one output
variable to the existing system because they were sufficient to demonstrate the issues

with implementing an HVAC system with multiple I/O variables.

A modified Python script was written that incorporates dehumidification input and
output variables. I explained how dehumidification can be implemented in a real HVAC

system. The script simulated this action by lighting a LED when the dehumidification
mode was activated.

Sensors

I CONSIDERED TITLING this chapter “Nuts and Bolts” because it is all about a variety
of HA sensors that I believe make up the nuts and bolts of an HA system. I have
discussed various sensors in previous chapters but really didn’t provide too much
discussion on how they work or are interfaced with a RasPi. This chapter provides the
necessary background on how to connect and program several commonly used sensors
found in HA systems. Hopefully, it will also provide enough guidance for you to be able

to connect different sensors using similar interface connections.

TEMPERATURE AND HUMIDITY SENSORS

I will cover a variety of temperature and humidity sensors to provide you with a good
understanding of how these sensors function. Each sensor provides both temperature
and humidity readings, but they provide the data to a RasPi using different data
protocols. You will gain a good understanding of the different interface protocols by
reading all these sensor discussions. You should also consider duplicating one or more

of the demonstrations to further improve your knowledge and confidence in using this

sensor type.
Parts List
Item Model Quantity Source
RasPi 3 B 1 adafruit.com
amazon.com
mcmelectronics.com
Temp/humidity sensor DHT11 1 adafruit.com

10-kiloohm (kQ) resistor Commodity adafruit.com

Temperature sensor TMP36 adafruit.com

Ultrasonic sensor HC-SR04 amazon.com

1
1
PIR sensor 555-28027 1 parallax.com
1
1

Level shifter 1875 adafruit.com

DHT11

A number of fairly inexpensive temperature and humidity sensors are readily available

for purchase. They fall into one of three categories based on how they are designed:

m Capacitive. These are thin-film capacitance-based sensors with an element bonded

to a monolithic circuit that provides a voltage output as a function of relative humidity.

m Resistive. These measure the change in electrical impedance of a hygroscopic

medium such as a conductive polymer, salt, or treated substrate.

m Thermal conductivity. These consist of two matched negative temperature
coefficient (NTC) thermistor elements in a bridge circuit; one is hermetically

encapsulated in dry nitrogen, and the other is exposed to the environment.

I will be using the DHT11 resistive sensor because it is commonly used, quite
inexpensive, and has good Python libraries readily available. Figure 9-1 shows two
DHT11 versions that can be easily purchased. The unit on the left is the board version,
and the unit on the right is the standalone component version. I used the component

version in this chapter’s demonstration.

| ‘;

L APOSUS T DR W

DHT11 versions.

The DHT11 specifications are

m Very low cost

m 3to5Vof power

m 3-to5-VI/Olevels

m 2.5 mA of maximum current use during conversion or requesting data
m 20 to 80 percent humidity readings with +5 percent accuracy

m O to 50°C temperature readings with +2°C accuracy

m Maximum of 1-Hz sampling rate

m Size 15.5 x 12 x 5.5 mm (component version)

m Four I/O pins with 0.1-inch spacing

There is only one signal lead on the sensor, which functions as both an input and
output for digital signals. This arrangement is often referred to as a one-wire protocol
because it only uses one signal lead for both input and output data transmission.
Unfortunately, this is often confused with the 1-Wire Protocol, which is another single-
wire I/O data transmission protocol. The 1-Wire Protocol is a device communications
bus system designed by the Dallas Semiconductor Corp. that provides low-speed data,
signaling, and power over a single wire. Both single-wire protocols perform I/O
operations, but they use different timing and data-level representations. The software
library for the one-wire protocol has been specifically designed to operate with only that

protocol.

Physical Setup

Figure 9-2 is a Fritzing diagram showing how to connect a DHT11 with a RasPi. It is
very important to connect a 10-kQ pull-up resistor between the signal lead and the 5-V

supply. The one-wire protocol will not work without this resistor installed.

iiiiiiiiiiiiiiiiiiiiiii
llllllllllllllllllllll
!!!!!!!!!!!!!!!!!!!!!!!!!!

iiiiiiiiiiiiiiiiiiiiiiiiii
llllllllllllllllllllllllll

|||

fritzing

Fritzing diagram for connecting a DHT11 with a RasPi.

Note that the supply to the sensor is 5 V, but the signal output level is 3.3 V, making the
sensor completely compatible with the RasPi’s GPIO pin voltage levels. The DHT11
signal-out lead connects to RasPi GPIO pin 4.

Software Installation

You should follow this terminal command sequence to install the software required to

operate a DHT11 sensor using Python:
1. Installs the git application, which is required for the cloning operation:
sudo apt-get install git-core

2. Clone the Adafruit DHT11 software from the GitHub website:

git clone https://githb.com/adafruit/
Adafruit Python DHT.git

3. Change into a new directory created from the clone operation:
cd Adafruit Python DHT

4. Build the software:

sudo apt-get install build-essential
python-dev

5. Run the setup script:

sudo python setup.py install

There is a file named AdafruitDHT.py in the Examples directory, which is located in
the Adafruit_Python_DHT directory. This file will be used as a script to demonstrate

the sensor’s operation. You should first modify this file using the nano editor to

incorporate the changes I have noted in the following listing. The modifications cause

the script to continuously run as well as display temperatures in °F. You can leave out

that last change if you prefer to display temperatures in °C.

#!

T R R R

SIS

o % o O W

/usr/bin/python

Copyright (c) 2014 Adafruit Industries

Author: Tony DiCola

Modified by D. J. Norris, 2018

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALIL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLATIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEATL.INGS IN THE
SOFTWARE.

import sys
import Adafruit DHT

#

added - DJN

import time

Parse command line parameters.

sensor _args = { '11': Adafruit DHT.DHTI11,
'22': Adafruit DHT.DHT22,
'2302": Adafruit DHT.AM2302 }

if len(sys.argv) == 3 and sys.argv[l] in sensor_args:
sensor = sensor_args[sys.argv[1]]
pin = sys.argv[2]

else:

print('Usage: sudo ./Adafruit DHT.py [11]|22]2302] <GPIO pin number>")

print('Example: sudo ./Adafruit DHT.py 2302 4 - Read from an AM2302 connected to
GPIO pin #4')

sys.exit(1)

Try to grab a sensor reading. Use the read retry method which will retry up
to 15 times to get a sensor reading (waiting 2 seconds between each retry).

humidity, temperature = Adafruit DHT.read retry(sensor, pin)

Un—-comment the line below to convert the temperature to Fahrenheit.
Uncommented - DJN

temperature = temperature * 9/5.0 + 32

Note that sometimes you won’'t get a reading and
the results will be null (because Linux can't
guarantee the timing of calls to read the sensor).

If this happens try again!

H o W H

added - DJN, also pay attention to new indentations
while True:

if humidity is not None and temperature is not None:

print('Temp={0:0.1f} Humidity={1:0.1f}%'.format(temperature, humidity))

added - DJN, you change time delay to any value you desire

time.sleep(120)
else:

print('Failed to get reading. Try again!')

sys.exit(1l)

Test Run

I ran the test script by entering the following terminal commands:
cd Adafruit Python DHT/examples
python AdafruitDHT.py 11 4

Figure 9-3 shows the script output after running for several hours.

AdafruitDHT.py script screen display.

TMP36

Analog Devices’ TMP36 is my favorite temperature sensor, mainly because it is quite

accurate and also extremely inexpensive. It is shown in Figure 9-4.

Analog Devices TMP36 temperature sensor.

The TMP36 is housed in a standard TO-92 form factor, which is also common to most
plastic-encased transistors. The TMP36 is far more complex than a simple transistor in
that in contains circuits to both sense ambient temperature and convert that
temperature to an analog voltage. The functional block diagram is shown in Figure 9-5.

The TMP36 has only three leads, which are shown in the bottom view in Figure 9-6.

+V, (2.V to 5.5V)

TMP35/
™P36/ [Vour
TMP37

Shutdown

TMP36 functional block diagram.

HHE

Bottom View
(Mot to Scale)

Pin 1 Pin 2 Pin 3
Vcc Signal Out Ground

TMP36 bottom view showing external leads.

Table 9-1 provides details concerning these three leads, including important

limitations.

Table 9-1 TMP36 Pin Details

Pin
Number

Description

Remarks

1

+V

5

Supply voltage; ranges
from2.7to 55V

ouT

The analog voltage
representing the
temperature; the maximum
voltage depends on the
supply voltage

GND

Common reference used
by both the supply and V.
pins

The voltage representing the temperature depends on the TMP36 supply voltage, which
must be considered when converting the VOUT voltage to the equivalent real-world
temperature. I do account for this in the software that converts the VOUT voltage to an

actual temperature. Figure 9-7 is a graph of the signal pin voltage versus temperature

using a 3-V supply voltage.

20 I I
_ a. TMP 35 /
1.8 b. TMP36 /\
c. TMP37 M C
1.6 +V, =3V . //
S 14 |
> 12| /
8 .
=] ; !
= 1.0} ;
EL 0.8 | <3
S 06
04
0.2
{:L{] L 4 | L]
=50 -25 0 25 50 75 100 125
Temperature (°C)

Graph of Vgyr voltage versus temperature fora +Vg =3 V.

The actual temperature measurement range for the TMP36 is -40 to +125°C, with a
typically accuracy of +2°C and a 0.5°C linearity. These are good specifications
considering that the cost of the TMP36 is typically less than $2. The TMP36 range,

accuracy, and linearity are well suited for a home temperature monitoring system.

Analog-to-Digital Conversion

The RasPi does not contain any means by which analog signals can be processed. This
means that an analog-to-digital converter (ADC) must be used before the RasPi can

handle this sensor’s signal.

I used a Microchip MCP3008, which is described on the Microchip datasheet as a 10-
bit SAR ADC with SPI data output. Translated, this means that the MCP3008 uses a
successive approximation register (SAR) technique to create a 10-bit digital result,
which, in turn, is output in a serial data stream using the Serial Peripheral Interface
(SPI) protocol. How the SPI protocol functions will be addressed after the sidebar that
follows. The inexpensive MCP3008 ADC chip has impressive specifications despite its

very low cost. Figure 9-8 shows the package form and pin-out for this chip.

cHo1 >~ 160 Vyp

CH1]2 15 Viss

CH2 3 14[] AGND
CH3 4 % 13[] CLK
CH4 []5 E 120 Doy
CHs e & 113 D,

CHe 7 10[J CS/SHDN
CH7 (8 97 DGND

MCP3008 package form and pin-out.

The MCP3008 chip used in this chapter’s project is in a dual-in-line package (DIP),
which means that I had to use a solderless breadboard to interface it with the RasPi. I
encourage you to read the following sidebar if you are interested in how the MCP3008
accomplishes the analog-to-digital conversion. There will be no loss of continuity if you

choose to skip the sidebar, however.

Inner Workings of the MCP3008 ADC Microchip

| will refer to the MCP3008 functional block diagram shown in Figure 9-9
throughout this discussion. The analog signal is first selected from one of
eight channels that may be connected to the input channel multiplexer. Using
one channel at a time is called operating in a single-ended mode. The
MCP3008 channels can be paired to operate in a differential mode if desired.
A single configuration bit named SGL/DIFF selects single-ended or
differential operating mode. Single-ended is the mode used in this project.

CH1 -—l} Input

1 | Channel DAC <
| Max
|
CH7* —p
A ¢ Comparator
Sample
and *

Control Logic |—p» Register

--------- R e

CS/SHDN D, CLK Dour

|
|
I
I
|
|
|
|
I
|
10-Bit SAR :
|
|
I
|
|
|
I
|

|

I

I

|

I

Hold

I

! v
I Shift
I

I

I

*Note: Channels 4-7 are available on MCP3008 only.

MCP3008 functional block diagram.

The selected channel is then routed to a sample-and-hold circuit, which is
one input to a comparator. The other input to the comparator is from a
digital-to-analog converter (DAC), which receives its input from a 10-bit SAR.

Basically, the SAR starts at a 0 count output and rapidly increments to a
maximum of 1,023, which is the largest number that can be represented with
10 bits. Each count increment also increases the voltage appearing at the
other comparator’s input. The comparator will trigger when the DAC voltage
precisely equals the sampled voltage, and this will stop the SAR from any
further incrementing. The digital number that exists on the SAR at the
moment the comparator triggers is the ADC value. This number is then
output, 1 bit at a time, through the SPI circuit, which | discussed below. All
this takes place between sample intervals. The actual voltage represented by
the ADC value is a function of the reference voltage V,¢f connected to the

MCP3008. In our case, V¢t is 3.3 V; therefore, each bit represents

3.3/1,024, or approximately 3.223 mV. For example, an ADC value of 500

would represent an actual voltage of 1.612 V, which was computed by
multiplying 0.003223 by 500.

Serial Peripheral Interface

The SPI is one of several data communication channels that the RasPi supports. Itis a
synchronous serial data link that uses one master device and one or more slave devices.

A minimum of four data lines are used with SPI, and Table 9-2 shows the names

associated with the master (RasPi) and the slave (MCP3008) devices.

Table 9-2 SPI Data Line Descriptions

Master Device | Slave Device

(RasPi) (MCP3008) Remarks

SCLK CLK Clock

MOSI D._ Master out, slave in
MISO o Master in, slave out
CS/SHDN SS Slave select

Figure 9-10 is a simplified block diagram showing the principal components used in an
SPI data link. There are usually two shift registers involved in the data link, as shown in
the figure. These registers may be hardware or software depending on the devices
involved. The RasPi implements its shift register in software, whereas the MCP3008

has a hardware shift register. In either case, the two shift registers form what is known

as an interchip circular buffer arrangement that is the heart of the SPI.

sS CS/SHDN
>
Master Slave
RasPi SCLK CLK > MCP3008

MOSI Din

>

7 0 7
MISO Dout
€

SPI simplified block diagram.

Data communication is initiated by the master by first selecting the required slave. The
RasPi selects the MCP3008 by bringing the SS line to a low state or 0 VDC. During each
clock cycle, the master sends a bit to the slave, which reads it from the MOSI line.
Concurrently, the slave sends a bit to the master, which reads it from the MISO line.
This operation is known as full duplex communication, that is, simultaneous reading

and writing between master and slave.

The clock frequency used depends primarily on the slave’s response speed. The
MCP3008 can easily handle bit rates of up to 3.6 MHz if powered at 5 V. Because we
are using 3.3 V, the maximum rate is a bit less at approximately 2 MHz. This is still very

quick and will process the RasPi input without losing any data.

The first clock pulse received by the MCP3008 with its chip select (CS) held low and D;,
high constitutes the start bit. The SGL/DIFF bit follows next and then 3 bits that
represent the selected channel(s). After these 5 bits have been received, the MCP3008

will sample the analog voltage during the next clock cycle.

The MCP3008 then outputs what is known as a low null bit, which is disregarded by
the RasPi. The following 10 bits, each sent on a clock cycle, are the ADC value with the
most significant bit (MSB) sent first down to the least significant bit (LSB) sent last.
The RasPi will then put the MCP3008 CS pin high, ending the ADC process.

Initial Test

Initial testing involves both creating a hardware circuit and establishing the proper

Python software environment.

Hardware Setup. 1will first discuss the hardware circuit because it is relatively
straightforward. Figure 9-11 shows the test schematic for the T-Cobbler, MCP3008, and
TMP36. I connected the TMP36 V,; lead to the MCP3008 Channel o input, which is

pin 1, as shown in Figure 9-8.

MCP3008
3.3V
P Voo (16)
L Vigs (15) SV
GND |1
> AGND (14)
Signal
TCobbler | Lb DGND (9) C(']*)O >1 TMP36
in18
»| CLK(13) 3
Pin 23
) Dour (12) Ground
Pin 24
»{ D, (11)
Pin 25
» CS(10)

Test schematic.

The actual physical setup is shown in Figure 9-12. On the right side of the breadboard,

you can see the TMP36 sensor connected with three jumper wires to the other

breadboard circuitry.

Physical test setup.

Table 9-3 shows the equivalents between the ADC count, sensed temperature, and
voltage. Use these values to verify that the TMP36 sensor is accurately measuring the
ambient temperature. You can easily add a calibration factor if the measured
temperature does not equal the true temperature as measured by a separate calibrated

thermometer.

Table 9-3 ADC Count, Voltage, and Temperature Equivalents

Temperature
ADC value (°C) Voltage
0 -50 0.00
78 -25 0.25
155 0 0.50
233 25 0.75
310 50 1.00
465 100 1.50
Fi5 200 2.50
1023 280 3.30

Software Setup. You next need to load the Python developer libraries, which will
allow you to support the script to run the SPI circuit. Install the Python development
libraries by entering

sudo apt-get install python-dev

The following test script displays a continuous stream of temperature values generated
by the TMP36 sensor. The program is named TMPSensor.py and is available for
download from this book’s website,
www.mhprofessional.com/NorrisHomeAutomation. The code follows the MCP3008
ADC configuration guidelines and SPI protocol, as discussed earlier. The code employs
a “bit-banging” approach to SPI interface implementation. This approach makes
running the script independent of any prerequisite SPI driver installations, which I felt

made the test process as simple as possible.

#1 /usr/bin/env python

import time

import os

import svys

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)

read SPI data from MCP3008 chip, 8 possible channels (0 thru 7)
def readadc(adcnum, clockpin, mosipin, misopin, cspin):
if ({(adcnum > 7) or (adcnum < 0)):
return -1
GPIO.output(cspin, True)

GPIO.output(clockpin, False) # start clock low
GPIO.output(cspin, False) # bring CS low

commandout = adcnum
commandout |= 0x18 # start bit + single-ended bit

commandout <<= 3 # we only need to send 5 bits here

for 1 in range(5) :
if (commandout & 0x80):

GPIO.output(mosipin, True)
else:

GPIO.output(mosipin, False)
commandout <<= 1
GPIO.output(clockpin, True)
GPID.output(clockpin, False)

adcout = 0
read in one empty bit, one null bit and 10 ADC bits
for i in range(12):

GPIO.output(clockpin, True)

GPID.output(clockpin, False)

adcout <<= 1

if (GPIO.input(misopin)):

adcout |= 0xl

GPIO.output(cspin, True)

adcout >>= 1 # first bit is 'null’' so drop it

return adcout

define a function to convert raw count to a voltage level
def ConvertVolts(data, places):

volts = (data * 3.3) / 1023

volts = round(volts, places)

return volts

define a function to calculate temp from TMP36 data
def ConvertTemp(data, places):

temp = ((data * 230/1023) - 50)

temp = round(temp, places)

return temp

change these as desired - they're the pins connected from the
SPI port on the ADC to the T-Cobbler
SPICLK = 18

SPIMISO = 23
SPIMOEI = 24
SPICS = 25

set up the SPI interface pins
GPIO.setup(SPIMOSI, GPIO.OUT)
GPIO.setup(SPIMISO, GPIO.IN)
GPIO.setup(SPICLK, GPIO.OUT)
GPIO.setup(SPICS, GPIO.OUT)

TMP36 connected to adc #0
temp adc = 0;

define delay time
delay = 2

while True:

read the analog pin
temp level = readadc(temp adc, SPICLK, SPIMOSI, SPIMISO, SPICS)
if temp level == -1:
print 'incorrect ADC channel'
sys.exit()
temp volts = ConvertVolts(temp level, 2)
temp = ConvertTemp(temp level, 2)

display results

pEink fessrscrememrae e e !

print temp level, , temp volts, , temp

delay (in seconds) between measurements

Run the script by entering
sudo python TMPSensor.py

Figure 9-13 is screen shot of a portion of the program output with the TMP36 sensor
measuring ambient room temperature. In the figure, the number in the left-hand

column is the raw count coming from the MCP3008 ADC. The number in the middle
column is the equivalent voltage for the raw count. The right-hand column shows the

equivalent temperature for the voltage in degrees Celsius.

Initial test results.

Passive Infrared Sensor

This sensor is designed to sense the presence of humans or other warm-blooded
mammals. Figure 9-14 shows a typical passive infrared (PIR) sensor, which is

inexpensive and commonly used for both motion and occupancy detection.

Passive infrared sensor.

This sensor’s ratings, pin connections, and range jumper settings are detailed in Figure

9-15, which comes from the manufacturer’s datasheet.

Pin Definitions and Ratings

Pin Name Type | Function
1 GND G Ground: 0V
2 Vce P Supply Voltage: 3 to 6VDC
3 ouT 0 PIR Signaling: HIGH = Movement; LOW = No Movement

Pin Type: P = Power; G = Ground; | = Input; O = Output

Jumper Settings

Symbol | Description

S Reduced sensitivity mode, for a shorter range, about 15 feet maximum
L Normal operation, for a longer range, about 30 feet maximum
Quick-Start Circuit

gAY
SU3S Hid

g
6

B ©
-
LT08T-55S 1o

po 1

GND

Sensor ratings, pin connections, and jumper settings.

The PIR sensor uses a crystalline material that generates an electric charge when

exposed to infrared energy. The amount of energy generated is proportional to the size

and thermal properties of nearby objects. Environmental conditions also affect the
sensor, including ambient light and heat sources. A Fresnel lens located in front of the
active element that focuses all incoming infrared signals. An onboard electronic
amplifier is triggered when rapid infrared signal changes are detected. The detection
range for this particular sensor may be modified by repositioning a jumper located in
the upper left-hand corner, as shown in the quick-start circuit of Figure 9-15. One
position is the so-called normal position and provides a nominal 30-foot detection
range. The other position is the reduced-sensitivity one, where the detection range is
half the normal range, or 15 feet. That position would be appropriate for indoor use in a

normal-sized room.

This type of sensor is affected by ambient temperature, which should not be surprising
considering that it basically works by detecting rapid temperature changes. Figure 9-16
is a graph that shows the effects of ambient temperature on the sensor for both the

normal and reduced-sensitivity jumper settings.

35
30

Operating Mode

= 25
b —— Reduced
% 20 Sensitivity
(¥
8§15 —— Normal
= Operation
0 10 \ P

5

0

65 70 75 80 85 90 95

Temperature (°F)

Ambient temperature versus detection range.

Test Script

There are no special software dependencies that need to be installed in order to support
this sensor. It functions just fine with the normal RPi.GPIO library that I have used in
previous chapters, which is the only library needed to interface with the RasPi GPIO
pins. The following is the Python script I wrote to test this sensor. I named this script
PIRTest.py, and it is available from this book’s companion website,

www.mhprofessional.com/NorrisHomeAutomation.

#!/usr/bin/env python

import time

import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)

connect to GPIO pin 18
PIR pin = 18

GPIO.setup(PIR pin, GPIO.IN)

while True:
i1f GPIO.ANPUL(PIR pin):
print: “PIR ralert
time.sleep(2)

Test Run

The sensor has some dim red LEDs in the Fresnel lens that will light for approximately
40 seconds when power is first applied to the sensor. This is the self-calibration period
that the sensor requires for normal operations. It will be ready to run the script after

this period ends and the LEDs go out. You can run the script by entering this command:
python PIRTest.py

Now wave your hand in front of the sensor, and you should see the message PIR
alert appear in the terminal window. It may reappear because the sensor requires
several seconds to reset after the initial motion ceases. The LEDs in the Fresnel lens will

also light when motion is detected.

This test demonstrates that this type of sensor is quite simple in its operation and has
little flexibility other than a range sensitivity setting. Nonetheless, this sensor type has
been applied to a vast variety of home lighting applications, including driveway and
porch lighting. However, the question naturally arises, what type of sensor is available
if you need a more precise measure of a person’s distance from the sensor? The next

section addresses this issue.

Ultrasonic Sensor

An ultrasonic sensor provides for actual distance measurements between a target and

the sensor. Figure 9-17 shows front and back views of the ultrasonic sensor used in this

demonstration.

Ultrasonic sensor front and back views.

The ultrasonic sensor contains an embedded microprocessor as part of the
encapsulated sensor hardware. This processor controls the ultrasonic transmitter and
receiver transducers that physically measure distance by bouncing discrete ultrasonic
sound wave pulses off objects and timing how long the sound pulse takes to make the
round-trip transit. The distance is easily calculated because the speed of sound in air is
relatively constant. This is very similar to how bats navigate in caves and attics. Figure

0-18 is a block diagram of the sensor showing how it functions.

Ultrasonic
Embedded Wave Pulses

—> j)))\
L w o

Amplifier

Processor

To RasPi ——

Ultrasonic sensor block diagram.

The embedded processor generates an ultrasonic pulse when triggered by the RasPi. It
also generates an output pulse if a return echo is detected. A RasPi GPIO pin is used to
trigger a 40-kHz ultrasonic burst. The sensor then “listens” for an echo return and sets
another RasPi GPIO pin high. Software running on the RasPi detects the time
differential between the trigger pulse and the echo return pulse and converts that time
interval into an equivalent distance between the sensor and the reflecting target. The
operational block diagram in Figure 9-19 illustrates this process and identifies the
sensor and RasPi pins used for the interconnections. However, an important level-

shifter chip is not shown in this figure but is shown in the schematic in the next section.

10uS Trigger
f—? Tx

v
23 8 40kHz Pules .
- A

VCC T
—=| TRIG 0
== 5| ECHO
S
24 Total Transit
Time

Rx

Operational block diagram.

The ultrasonic sensor measures distances from 3 to 250 centimeters (cm) with an
accuracy of approximately +2 cm, which is less than a 1-inch error. Distance

measurements also depend on the size and texture of the object that reflects the sound

pulses. A wall provides excellent reflections, whereas a stuffed toy would be more

problematic.

Physical Setup

This sensor requires 5 V for power and returns 5-V pulses for the echo signal. This
voltage level is incompatible with a RasPi GPIO level input and must be reduced to 3.3
V or else damage will occur to the RasPi. I elected to use a level-shifter module to

accomplish this reduction. Figure 9-20 is the interconnection schematic.

T-Cobbler
HC-SR04
5V * Ve]
23 ha Trig
al b1
24 Echo
Level
Ghip |u| Shifter ahp]
3.3V
lGND

Interconnection schematic.

NOTE: You can also use a simple resistive divider to lower the input voltage to pin 24,
but I already had a level-shifter module available and felt that it was a better solution to
this problem. However, Figure 9-21 is a schematic for the resistive voltage divider for

those of you who may choose to use that alternative.

Echo Pin (5V) =——

% R, =5.1K

¢+——— GPIO Pin 24 (3.3V)

R,=10K

GND

Resistor voltage divider.

Figure 9-22 shows the breadboard ready for a test. You should place the sensor near the
outer edge of the breadboard, clear of any other components or wires. I placed a small

box in front of the sensor as well as a ruler calibrated in centimeters between the sensor

and the box target.

Physical setup.

Test Script

No special software dependencies are needed to support this sensor. It functions with
the normal RPi.GPIO library, which that I have used in previous demonstrations. The
following is the Python script I wrote to test this sensor. I named this script

UltrasonicTest.py, and it is available on this book’s website.

#!/usr/bin/env python

import time
import RPi.GPIO as GPIO

GPIO.setmode (GPIO.BCM)
define the GPIO pins
trigPin = 23

echoPin = 24

setup the GPIO pins
GPIO.setupn(triaPin. GPIO.OUT)

'S LY = r r

GPIO.setup(echoPin, GPIO.IN)

set the trigger initially low
GPIO.output(trigPin, GPIO.LOW)

short time to settle the sensor
time.sleep(1l)

forever loop

while True:
generate the 10uS trigger pulse
GPIO.output(trigPin, GPIO.HIGH)
time.sleep(0.000010)
GPIO.output(trigPin, GPIO.LOW)

wait for an echo return

while GPIO.input(echoPin) == 0:
pulse start = time.time()
while GPIO. input(echoPin) == 1:

pulse end = time.time()

calculate pulse duration
pulse duration = pulse _end -
pulse start

calculate distance using a sound
velocity constant
distance = pulse duration * 17150

round-off distance to two dp's
distance = round(distance, 2)

display the distance in cm
print 'distance = ', distance

short pause between readings
time.sleep(2)

Test Run

You can run the script by entering this command:

python ultrasonicTest.py

Figure 9-23 shows the script output using a good reflective target set at about 10 cm

from the sensor. The displayed values very accurately correspond with the actual

distance between the sensor and target. I then tried measuring the distance between the

room ceiling and the sensor. I again found a very accurate measurement result.

File Edit Tabs Help

Script output.

The most popular form of object detection in HA applications has been with PIR
sensors, which I discussed earlier. While reliable, they are easily activated and fooled by
temperature or light changes, flying insects, and small animals. In contrast, ultrasonic
detection is more reliable because it senses motion or presence of an object by the
reflection of transmitted ultrasonic bursts. Ultrasonic presence detection can be a very
useful tool in building automation and boosting energy savings through the control of
lights, heating, and other energy consumers. Another potential HA application is
parking detection, where a driver can be guided to very accurately park a car in a
garage. Ultrasonic detectors also can be used in safety applications in which very
reliable object detection is a high priority. A good application might be swimming pool
surveillance, where it is critical to generate an alert or alarm if a small child attempts to

enter an unattended pool.

SUMMARY

This chapter discussed popular sensors often used in HA systems. My primary purpose
was to explore how different sensors operate and how they can be interfaced with a
RasPi.

The first sensor demonstrated was the DHT11, which is an integrated humidity and
temperature sensor. It works using a software library provided by Adafruit, which has a
single-line command to input a set of humidity and temperature readings from the

SENsSor.

The next sensor described was a very inexpensive temperature sensor named TMP36. It
outputs an analog DC voltage proportional to temperature. This situation requires the
use of an analog-to-digital converter (ADC) between the sensor and the RasPi. I
described how to set up a MCP3008 ADC to do the analog-to-digital conversion. I
explained how the ADC used the SPI protocol to communicate with the RasPi. The
project demonstration successfully measured ambient temperature using the TMP36,
MCP3008, and RasPi.

I next demonstrated a passive infrared (PIR) sensor. This sensor uses a crystalline
sensing element to detect changes in ambient heat signatures. It is very useful for

motion-detection applications.

The last sensor demonstrated used ultrasonic acoustic pulses to measure distances

between the sensor and a target. This technique is akin to how bats echo-locate around

their environment. This sensor is very accurate and reliable and is independent of

ambient temperature, which adversely affects PIR sensors.

HA Security Systems

SECURITY SYSTEMS ARE CURRENTLY a hot topic in the HA field. There are literally
dozens of such systems on display at major home improvement stores and “big box”
electronics outlets. I could not in good conscience write an HA book without discussing
this topic. In order to properly discuss home security, I would first like to discuss the
concept of risk because it has a big impact on the type of security system required for a

specific situation.

RISK

Most readers have heard and used the word risk many times. Most probably have not
thought too much about what it actually means and how it may be used in analyzing a

particular condition. The online Merriam-Webster Dictionary definition of risk is

1: possibility of loss or injury: peril

Parts List

Item Model Quantity Source

RasPi 3 BorB+ 1 adafruit.com
amazon.com
mcmelectronics.com

Arduino development board Uno Rev 3 1 adafruit.com
amazon.com
mcmelectronics.com

Google Home device Any Home unit such as 1 amazon.com

Basic or Mini

PIR sensor 555-28027 1 parallax.com

TauTronics Bluetooth transceiver | Version 4.1 1 amazon.com

XBee transceiver XBee Pro S1 2 digikey.com
mouser.com
amazon.com

XBee Shield (Module) - 2 sainsmart.com
amazon.com

Bidirectional level-shifter chip 1875 1 adafruit.com

2: someone or something that creates or suggests a hazard

3a: the chance of loss or the perils to the subject matter of an insurance contract; also:

the degree of probability of such loss

b: a person or thing that is a specified hazard to an insurer

c: an insurance hazard from a specified cause or source: war risk

4: the chance that an investment (such as a stock or commodity) will lose value

I prefer a simpler definition, which is actually contained in the same dictionary

definition but is rephrased to highlight an important consequence:
Risk is the probability of a hazard happening.

This simple definition raises the question, what constitutes a hazard? Common sense
dictates that a hazard is any unwanted event, which could be as minor as misplacing
your car keys or as catastrophic as having your home burn down. Common security

hazards likely encompass some of the following;:
m Smoke/fire

m Water/flood damage

m Carbon monoxide (CO)

m Burglars

m Home invasion
m Loss of power
m Pet confinement
m Privacy

There are likely others that may be of concern, but let’s stick with this short list. Each of
the listed hazards typically has a probability associated with it. This probability is the
chance that a hazard will happen. You will likely not know this value, which ranges
from o to 1.0. A 0 value means that there is absolutely no chance that a particular
hazard will occur, whereas a 1.0 value means that it is 100 percent certain that a hazard
will happen. For example, in the area where I live, it is common to have a loss of power
occasionally during or after a severe storm passes through. Some probability values can
only be determined by contacting appropriate local authorities. The local police chief or
sheriff will likely have good statistics on the number of home burglaries and/or home
invasions. Likewise, the local fire chief can provide good data on the number of home

fires that have happened recently in your city or town.

Identifying potential hazards should always be the first step in creating an optimal
security system tailored toward a specific home or business. The next step is collecting
or otherwise assigning a probability to the identified hazards. Sometimes you must
assign a value based solely on a “gut” feeling for the likelihood of a hazard happening.
In any case, the next step is to whittle down the list and eliminate hazards that have a

low probability of happening.

The next step in the process is to evaluate the cost versus benefit of mitigating the risk
associated with all the hazards remaining on the list. Sometimes this is a rather easy
task when considering risk versus cost. For example, mitigating the risk associated with
smoke, fire, and CO detection in a home is just the purchase of a sufficient number of
appropriate detectors and installing them in the recommended stations throughout the
home. This risk mitigation is fairly inexpensive and, considering the hazard involved,
an absolute necessity. In fact, most cities and towns in the United States at present
require by government regulation that smoke detectors be installed in all new

construction, whether it is residential or commercial.

Evaluating how much to spend on mitigating burglary risk is more problematic. It
really depends on the crime prevalence in your community. If there have been many
burglaries in your neighborhood, then the question becomes not if, but when. In this

case, you should invest in a highly capable security system that will make your property

less of a tempting target than other local properties. By contrast, if there have been no
or extremely few burglaries in your area, then a minimal, inexpensive system likely
would be appropriate. Notice that I did not say that no system was required because

criminals always seem to be in ample supply and will eventually strike.

This discussion is simply a prologue to my first demonstration of a relatively simple

security system that uses a single PIR sensor first described in Chapter 9.

PIR SECURITY SYSTEM

This system will implement a motion-detection system that can be placed high up in a
room corner where it can cover the entire space. The remote PIR sensor is battery
operated to facilitate easy placement and provide great flexibility to the user so that a
room may be properly covered. I started this project with a list of requirements to
clearly delineate what was needed and to ensure that the system met the specific

objectives required for implementing the room security.

Security System Requirements

The following is a list of the minimal requirements necessary to meet the goals of the

security system:

m PIR motion detector

m Remote sensor, battery operated

m Wireless data transmission capability to a main RasPi controller

m Voice assistant activation

m Wireless alert/alarm transmission from the RasPi controller to the voice assistant

These requirements can be addressed in a variety of ways. I decided to break up the

project into a series of subsystems to ease the overall design and construction.

Remote Sensor Hub

The components of the remote sensor assembly are shown in the block diagram in
Figure 10-1. Note that I used two Arduino Uno Rev 3 boards as a controller for this the
wireless data subsystem. An Uno controller is in direct wireless connection with the
main RasPi controller using an XBee Shield, which, in turn, interfaces with an XBee RF

module that implements the Zigbee data communications protocol. I discuss the XBee

Shield, the XBee Module, and the Zigbee protocol in the next section.

Infrared

—— Target
Arduino X-Bee X-Bee X-Bee X-Bee Arduino -~
Uno [| shield [Module] — % |Module[| shield [] uUno il (’E
Wireless
Link PIR Sensor

S BT Google
asPi —
Module —\ H”T’e
Wireless Device
Link 1

Internet
Cloud

Remote sensor hub block diagram.

The remote hub Uno controller will send an alert/alarm signal to the RasPi when it
receives a signal from the PIR sensor on detecting motion within the room. The

complete remote sensor assembly is power by a 6-V battery pack.

XBee and Zigbee Technologies

I selected XBee transceivers to implement the RF link because they are small,
lightweight, inexpensive, and totally compatible with Uno boards. They also can
transmit programmed digital data packets, unlike the RF transceivers discussed in
Chapter 2, which only transmit several fixed and unchangeable digital data values. This
additional flexibility is important in order to be able to transmit specific sensor data to
support data-generator sensors. A data-generator sensor might include one that passes

environmental data such as temperature and/or humidity.

XBee is the brand name for a series of digital RF transceivers manufactured by Digi
International. Figure 10-2 shows one of the XBee Pro S1 transceivers that I used. There
are two rows of 10 pins on each side of the module. These pins are spaced 2 mm apart,
which is incompatible with the standard 0.1-inch spacing used on solderless
breadboards. This means that a special connector socket must be used with the XBee
Module to interconnect it with the Uno. This special socket is part of the XBee Arduino
Shield, which is shown in Figure 10-3.

' XBe

FPROS
G st i

« FCC ID: OUR-XBEEPRO
W IC: 4214A-XBEEPRO
Maodel: XBEEPRO
1@ 30009732-02

www.digi.com

XBee Pro S1 transceiver.

[SHEE
PRO

SAINSMARTXBEE

XBee Arduino Shield.

This shield can be purchased from sainsmart.com and contains all the functionality
needed to effectively interface an Arduino board such as the Uno with an XBee Module.
The shield and accompanying software make it very easy to create a useful RF

communications link with very little effort.

The following sidebar examines the XBee hardware to show how this clever design
makes wireless transmission so easy. Feel free to skip the sidebar if you are not

particularly interested in learning about the XBee technology.

XBee Hardware

All the electronics in the XBee hardware, except for the antenna, are
contained in a slim metal case located on the bottom of the module, as can
be seen in Figure 10-4. If you look closely at the figure, you should see the
bottom of the antenna wire, which is located near the top left corner of the
case. While Digi International is not too forthcoming regarding what makes
up the electronic contents of the case, | did determine that the earlier
versions of the XBee Pro transceivers used the Freescale Model MC13192
RF transceiver. This chip is a hybrid type, meaning that it is made up of both
analog and digital components. The analog components make up the RF
transmit-and-receive circuits, whereas the digital components implement all
the other chip functions. It is a complex chip, which is the reason why the
XBee Module is so versatile and able to automatically perform a remarkable
number of networking functions. Table 10-1 shows a select number of
features and specifications for the MC13192 chip.

e1ez LN 19100
¥ AJdZe-ZLL60008 . by

—_—
- FEE

"

@ CE

l:‘vﬂ

?ED-G,_, e znzz

XBP24=AWI~-

I}OO:I. revG
ﬁ 0013A200

40BOAB29Y

080813-20:48

XBee electronics case.

Table 10-1 Freescale MC13192 Features and Specifications

Features/
Specifications

Description

Frequency/ O-QPSK data in 5.0-MHz

modulation channels and full spread-
spectrum encode and decode
(modified DSSS)
Operates on one of 16 selectable
channels in the 2.4-GHz ISM
band

Maximum 250 kilobits per second (kbps;

bandwidth compatible with the 802.15.4
standard)

Receiver <92 decibel-milliwatt (dBm;

sensitivity typical) at 1.0 percent packet
error rate

Maximum 0 dBm nominal, programmable

output power | from -27 to 4 dBm

Power supply |[2.0to3.4V

Power <1 pA of current

conservation | 1 A typical hibernate current

modes 35 pA typical doze current
(no CLKO)

Timers/ Four internal timer comparators

comparators | are available to supplement
MCU resource

Clock outputs | Programmable frequency clock
output (CLKO) for use by MCU

Number of 7

GPIO pins

Internal 16 MHz with onboard trim

oscillator capability

Operating —-40 to 85°C

temperature

range

Package size | QFN-32 Small Form Factor (SFF)

The XBee Module implements a full network protocol suite, but from a

hardware perspective, this means that there must also be a microprocessor
present in the electronics case. From my research, | cannot determine which
type of microprocessor it is, but | am willing to make an educated guess that
it is a Freescale chip based on the reasonable assumption that the MC13192
would be designed to be highly compatible with the company’s own line of
microprocessors. One other factor supporting my guess is that Digi
International has recently introduced a line of programmable XBee Modules
named XBee Pro SB that use the 8-bit Freescale S08 microprocessor.

The XBee pins are detailed in a logical arrangement in Figure 10-5 for your
information. All the pin and function descriptions are shown in Table 10-2. Be
aware that only four of the pins are needed for this project, and they are

shown with an asterisk next to the pin number.

Tx

Rx

+3.3V
/ XBee \
O_,\f]_l—;c +3.3V i/o* C}%EI
= Data Out i/o* OTEI
O_£>_|—4C Data In i/o* :}TD =
D—SC Cd* i/o* OTEI ¥
00— Reset Rts* gl b
D_?C Pwm ifo* Owl:l
—] nc Vref* [o—1
—20 nc Status D%D
EITC Sleep/Dtr Cts* C)“]"]"—-D
J Gnd Txled Io—0O
== 24 cm
< -

Logical XBee pin-out diagram.

Table 10-2 XBee Pin Descriptions and Functions

EILTmber Name(s) Description

iJFs v Power supply, 3.3V

25 D.. Data out (TXD)

g D, Data in (RXD)

4 DIO12 GPIO pin 12

5 Reset XBee module reset, pin low

6 PWMO/RSSI/DIO10 Pulse-width modulation (PWM Analog 0), received signal strength
indicator (RSSI), GPIO pin 10

7 DIO7 GPIO pin 7

8 Reserved Do Not Connect (DNC)

9 DTR/SLEEP_RQ/DIO8 | Data Terminal Ready (DTR), GPIO Sleep Assertion (pin low), GPIO pin 8

10* GND Ground or commen

11 DI04 GPIO pin 4

12 CTS/DIO7 Clear To Send (CTS), GPIO pin 7

13 ON/SLEEP Pin high when not sleeping

14 Vref Voltage reference level (used with analog-to-digital conversion)

15 ASSOC/DIOS Pulse signal when connected to a network, GPIO pin 5

16 RTS/DIO6 Request To Send (RTS), GPIO pin 6

17 AD3/DIO3 Analog input 3, GPIO pin 3

18 AD2/DIO2 Analog input 2, GPIO pin 2

19 AD1/DIO1 Analog input 1, GPIO pin 1

20 ADO0/DIO0/COMMIS Analog input 0, GPIO pin 0, commissioning button

A considerable number of functions are available to you if needed, but this

project requires only the most minimal functions for simple and reliable data

transfers. Thankfully, the two XBee Modules automatically connect and

establish reliable communications when power is applied to them. A red

blinking LED on the XBee Shield is your indication that a communications

link has been established.

I will finish this sidebar by mentioning that the XBee uses a highly capable
networking protocol name Zigbee, which is also called a personal area
network (PAN).

I fit the Uno board along with the XBee Shield and Module into a plastic case, as shown
in Figure 10-6. The assembly is completely self-contained and is easily mounted to a
wall surface using adhesive Velcro strips. I also decided to use a small solderless
breadboard within the case to facilitate interconnecting all the components for the first
prototype. It is always important to be able to easily reconfigure and reconnect
components during initial testing to resolve any latent problems or issues. Figure 10-7
shows the electrical schematic for the complete hub assembly, which includes a PIR

SENSor.

Remote sensor hub in a plastic case.

GND /_

Arduino Uno GO Ve {
with X-Bee Shield 5V ouT |
and Module 10
6V Battery \

Pack

PIR Sensor

Remote sensor hub schematic.

I also connected a coaxial plug to the battery pack, which inserts into the Uno board’s
coaxial power socket. I disconnect the power when not testing to conserve battery life.

The Uno board with the Arduino Shield removed is shown in Figure 10-8.

Battery pack connection to remote sensor hub assembly.

I will discuss the remote sensor assembly software after the next section concerning the

main RasPi controller.

Main Controller Assembly

I used a RasPi 3, Model B, as the main controller for this project. Figure 10-9 shows the

block diagram for the main controller assembly.

X-Bee X-Bee Arduino Level
— 1~ |Module Shield Uno | | Shifter RasPi B | ool
Wireless Module
Link Wireless

Link

]

]

]

1 WiFi
Internet :
Cloud

Main controller assembly block diagram.

The RasPi has an Uno board along with an XBee Shield and XBee Module, which
provide two-way communication with the remote sensor hub. It also has an external
Bluetooth transceiver that wirelessly connects to the voice assistant, enabling an audio
stream to be sent from the RasPi to the voice assistant. The audio stream is sourced

from the RasPi’s 3.5-mm audio output jack. You may be wondering why I didn’t just use

the built-in Bluetooth connection hardware in the RasPi 3. The answer is that I did try
it and found that the software installation was quite difficult and the actual wireless
connection was just too unreliable. I decided that use of an external Bluetooth module
was a much simpler and more reliable approach, and the module cost was also
reasonable. Sometimes you just have to take an alternative route to proceed with a

project.

The complete main controller assembly was set up on a tabletop for convenience
without any attempt to package it as a complete assembly. It is powered from AC mains
except for the external Bluetooth module, which has an internal rechargeable battery.
However, I did plug the module’s charging micro USB cable into one of the RasPi’s USB

sockets. The main controller schematic is shown in Figure 10-10.

T-Cobbler
Arduino Uno GND T GND SR TauTronics
with X-Bee Shield RasPi Audiolac Bluetooth | =V~
and Module 10 ;i USB Port Module | Bluetooth to
[ey Home Device

Wall-Wart
Supply GND

—1B1 AlI[
HV —
LV —

Level Shifter Chip

Main controller assembly schematic.

I used a solderless breadboard with a T-Cobbler interface adapter to interconnect all
the components for convenience and ease of assembly. I would have housed all the
components in a plastic case if I had wanted to make this system a permanent item in

the house. However, a tabletop version was adequate for this prototyping stage.

The remaining system component to be discussed is the voice assistant.

Voice Assistant

I elected to use the Google Home device to act as the voice assistant for this project. I
decided on this unit because I liked the idea of using Web services with the RasPi main
controller so that I could easily expand the system capabilities without having to fuss
with the Alexa Skills, if I elected to go that route. Feel free to use an Alexa device if you

so choose, but you will need to create your own Skill software to communicate with the

Alexa device. That should not be too hard, provided that you follow the guidelines I
presented in Chapter 4.

The Home device applet software is detailed within the following software generation

and installation sections.

Software Generation and Installation

I have chosen to parse the software sections into separate groups, where each group
addresses a major system component. The first component I discuss is the RasPi’s main

controller because that is the cornerstone of the complete system.

Main Controller Web Software

Creating the RasPi’s Web software is a fairly simple process as long as you keep in mind
what the subsystem requirements are and how they should be implemented. The

requirements for the main controller are as follows:

1. Respond to a Web request to activate the system

2. Activate the sensor by sending a signal to the remote sensor assembly

3. Respond to any alert/alarm message sent by the remote sensor assembly
4. Send a present alert/alarm to the voice assistant via Bluetooth

I will comment on each one of these requirements as I go through the Web software

development details.

In the spirit of rapid software development, I decided to reuse the Web server code I
created in Chapter 2. I simply extended the existing code by creating a new snippet that
would respond to any applet requesting that the PIR sensor be enabled. Please review
the Chapter 2 discussion regarding applets and corresponding Web services if what I

just mentioned does not make sense to you.

The newly extended Web server code listing, which I named securityTest.py, is as

follows:

Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO

from flask import Flask

app = Flask(__name__)

This is the default method that is invoked without an extension
@app.route("/", methods=['GET', 'POST'])
def index():

GPIO.setmode(GPIO.BCM)

GPIO.setup(12, GPIO.OUT)

print "Turning the LED on"

GPIO.output(12, GPIO.HIGH)

return "LED on"

This method is invoked when an "/off" extension is detected
@app.route("/off", methods=['GET', 'POST'])
def off():

GPIO.setmode (GPIO.BCM)

GPIO.setup(lZ, GPIO.OUT)
print "Turning off the LED"
GPIO.ocutput(l2, GPIO.LOW)
return "LED off"

This method is invoked when an "/AClampon” extension is detected
@app.route("/AClampon”, methods=['GET', 'POST'])
def AClampon():

GPIO.setmode (GPIO.BCM)

GPIO.setup(7, GPIO.OUT)

print "Turning on the AC lamp"

GPIO.output(7, GPIO.HIGH)

return "AC lamp on"

This method is invoked when an "/AClampoff" extension is detected
@app.route("/AClampoff”, methods=['GET', 'POST'])
def AClampoff():

GPIO.setmode (GPIO.BCM)

GPIO.setup(7, GPIO.OUT)

print "Turning of the AC lamp"

GPIO.output(7, GPIO.LOW)

return "AC lamp off"

This method is invoked when an "/turnonsecurity" extension is detected
@app.route("/turnonsecurity", methods=['GET', 'POST'])
def EnableSecuritySystem():

GPIO.setmode (GPIO.BCM)

GPIO.setup(l8, GPIO.OUT)

print "Enabling the security system"”

GPIO.output(l8, GPIO.HIGH)

return "Security system enabled"

def DisableSecuritySystem():
GPIO.setmode (GPIO.BCM)
GPIO.setup(l8, GPIO.OUT)
print "Disabling the security system"

GPIO.output(1l8, GPIO.LOW)
return "Security system disabled”

" ey

if name_ == "_ main_":

app.run(host="0.0.0.0", port=80, debug=True)

But wait, if you examined the listing, you realized it only controls GPIO pin 18 and has
nothing in it that would activate the remote sensor hub. I did this on purpose because I
have not yet shown you anything regarding how I implemented RF communications
software and what type of data are linked between the main controller and the remote
sensor hub. It is almost always a serious mistake to attempt to implement every

requirement at one time. In this case, I will only light a LED connected to pin 18 as

proof that the Web request is working as expected. The RF software portion will come

later as I complete all the code.

The next logical step in code development is to create two applets that will request that
the security system be enabled or disabled. Again, I will not repeat the clear
instructions provided in Chapter 2 but simply summarize some of the information
required to create the applets. One new applet is required to activate the security
system and another one to disable it. I used the following example URLs for these

applets:
http://mytestsite.org/turnonsecurity
http://mytestsite.org/turnoffsecurity

Please note these URLs are just examples, not real ones, so they will not work. The
applets both use a POST method, which is how the desired action is directed to the
appropriate method within the RasPi Web server.

The activation trigger phrases I used in the applets are
m “Turn on security system”

m “Turn off security system”

The two response phrases are

m “The security system is on”

m “The security system is off”

The main controller software is ready for a quick initial test prior to proceeding with

adding more complexity to the system.

Initial Test 1 connected a LED to GPIO pin 18 in preparation to test the newly

extended RasPi Web server. I then started the RasPi Web server with this command:
sudo python securityTest.py

I then spoke the next phrase to test the “T'urn on security system” applet:

m “OK Google, turn on security system.”

The LED connected to pin 18 turned on after I spoke the phrase into the Home device. I

also heard the phrase “The security system is on” come from the Home device,
confirming that the Web request was completed. In a similar manner, the LED turned
off after I spoke the phrase “OK Google, turn off the security system.” As above, I heard
the phrase “The security system is off” come from the Home device, confirming that the

desired Web request was completed.

These actions confirmed that the Web server and applets were functioning as desired. It
was now time to expand the software to include the RF communications link with the

remote sensor hub.

RF Communications Link My initial objective in implementing the wireless link
was just to convey a state change whenever the PIR sensor detected motion. By far the
easiest way to do this was by using GPIO pins on both the Uno controller and one RasPi
GPIO pin. I was well aware that this approach runs counter to what I discussed earlier
in having actual data sent, but my immediate goal was to quickly and reliably create a
working RF link. The wireless link can be extended at a later time to handle real data

exchanges, but for now, I just wanted to get the system up and running.

Remote Hub Hardware and Software Installation 1 already described the
remote hub assembly in a previous section. I do have to provide a schematic showing
how the PIR sensor connects to the Arduino board before describing the software that

controls the whole assembly.

Remote Hub Hardware Installation Figure 10-7 showed the three-wire connection
between the Uno and the PIR sensor. I mounted the PIR sensor to a small solderless
breadboard, which was attached to the plastic case. The three interconnecting wires
were routed through a hole on the top of the case to the Arduino board. Figure 10-11

shows the complete assembly with the PIR sensor in place.

Complete remote hub with sensor.

You will be ready for the remote hub software installation once the preceding assembly

steps have been completed.

Remote Hub Software Installation You will need to install the latest Arduino IDE in
order to install the code described in this section. This is a free IDE download available
for Windows, Mac, and Linux platforms at https://www.arduino.cc/en/Main/Software.
I will not attempt to explain how to use this software because most of the readers of this
book are quite likely to be very familiar with this IDE. However, a lot of information

and tutorials are available on the Internet for readers who have never used an Arduino.

This next listing, which I named pirTest.ino, transmits either a 1 or a 0 to any other
XBee in its vicinity. A 1 is sent whenever the PIR sensor detects an object in its field of

vision; otherwise, a 0 is transmitted. The 1’s or 0’s are sent out once per second.

int inPin = 10;
byte value = 0;

void setup() {
Serial.begin(9600);
pinMode(inPin, INPUT);

void loop() {
value = digitalRead(inPin);
Serial.println(value);
delay(1000);

This program is written using the Processing language, which for all practical purposes
is a lightweight version of C/C++. The Serial class performs all the functions

necessary to automatically interface the Uno with the XBee Shield. The statement
Serial.println(value);
is all that it takes to transmit the data values using the XBee Shield.

There is no need to go through a power-on sequence with the Uno board. Any uploaded
program stored in its EEPROM will automatically run when power is applied to the
Uno. Likewise, the Uno is designed to shut off “gracefully” when the power is

disconnected.

No other software installations are required for the remote sensor hub. The next

software installation to be discussed concerns the main controller assembly.

Additional Main Controller Hardware and Software Installations 1have
already described most of the principal components required for the main controller
assembly in a previous section. The Web software necessary to control the main
controller assembly was also described and tested in previous sections. I also provided
a schematic showing how the Uno with an XBee Shield attached connects to the RasPi.
In addition, I described how to set up the external Bluetooth module, which creates a

wireless link between the RasPi and the Home device.

Main Controller Hardware Installation Figure 10-10 showed how to connect the Uno

to the RasPi. Please note that I used a level-shifter chip between the Uno and the RasPi
because the Uno output level is 5 V, whereas the RasPi cannot handle any level greater
than 3.3 V without likely damage. Both the 3.3- and 5-V supplies are sourced from the
T-Cobbler adapter.

The Uno and XBee assembly are powered from a separate wall wart power supply. Do
not attempt to power the Uno from the T-Cobbler 5-V power source. There is simply

not enough current available from that source to power both the RasPi and Uno boards.

A TauTronic external Bluetooth module is shown in Figure 10-12. The 3.5-mm phone
jacket shown in the figure must be plugged into the matching socket mounted on the
RasPi.

TauTronic external Bluetooth module.

All the components were situated on a tabletop for convenience. Figure 10-13 shows the

main controller assembly with all the components interconnected with a solderless
breadboard.

Complete main controller assembly.

You should now be ready for the main controller software installation once the

preceding assembly steps have been completed.

Main Controller Software Installation There are two scripts to be discussed regarding
the main controller software installation. The first is the Arduino code that is stored in
the UNO, which has an XBee Shield connected to it. The second portion concerns the
Python code stored on the RasPi, which responds to any alert/alarm sent to it by the
UNO. The RasPi will then send an alert via the Bluetooth module to the Home device.

I downloaded and installed the Arduino IDE on the RasPi from
https://www.arduino.cc/en/Main/Software. Just ensure that you select the Linux Arm
version from the list shown on the right-hand side of the website, as shown in Figure
10-14.

Windows installer, for Windows XP and up
Windows zIP file for non admin install

ARDUINO 1.8.6 Windows app Requires Win 81 or 10

The open-source Arduino Software (IDE) makes it easy to Get 58
write code and upload it to the board. It runs on ' :
Windows, Mac 05 X, and Linux. The environment is
written in Java and based on Processing and other open-
source software.

Mac OS X 10.7 Lion or newer

This software can be used with any Arduine board.
Refer to the Getting Started page for Installation
Instructions.

Linux 32 bits
Linux 64 bits
Linux ArRm

Release Notes
Source Code
Checksums (sha512)

Arduino IDE installation on the RasPi.

Using the Arduino IDE directly with the RasPi makes the overall process of creating
and loading software into the Uno very easy. I likewise found making any Arduino
software modifications a snap by having the IDE natively installed. I highly recommend
that you use this approach versus developing the software on a separate PC and then

connecting the Uno to the RasPi and testing it out.

The Uno software script, which I named mainController.ino, is as follows:

int outPin = 10:

void setup() {
Serial.begin(9600);

void loop() {
if(Serial.available()) {
char ¢ = Serial.read();
digitalWrite(outPin, LOW);

if(c == 85) {
digitalWrite(outPin, HIGH);

}
delay(1000);

The script is very simple, with the Uno constantly receiving characters sent from the

remote sensor hub with the single statement
char ¢ = Serial.read();

The Serial class once again makes XBee data links exceedingly easy, as I mentioned

in the remote sensor hub software installation discussion.

The script tests for a trigger value, which when detected will set an Uno GPIO pin high.
This pin is also connected through a level-shifter chip to a RasPi GPIO pin. The RasPi

constantly monitors or polls its GPIO pin to detect when it changes state from low to

high. A Python script installed in the RasPi will then send an alert to the Home device

via the external Bluetooth module, which is connected to the 3.5-mm audio output jack.

The Python script, which I named receiveTest.py, must be loaded into the RasPi. This
script is as follows:

import time
import RPi.GPIO as GPIO
import os

inPin = 12

GPIO.setmode (GPIO.BCM)
GPIO.setup(inPin,GPIO.IN)

while True:
val = GPIO.input(inPin)
if(val == 1)
os.system('omxplayer -o local
Wake.mda')
time.sleep(10.0)

This script is also quite simple. The designated GPIO pin is constantly polled to check
whether its state has changed from low to high. If changed, a system-level call is made,
which, in turn, sends an audio file to the Home device indicating that the PIR sensor
has been triggered. I actually used a music file to send as an alert to the Home device.

You can use any mp3 or m4a file you want as an alert.

Systems Test 1 first tested the XBee wireless link by powering on the remote
transceiver and monitoring the output using the integrated serial monitor. Just to
reiterate, recall that the Serial.println (value) ; statement in the Arduino script
causes the value both to be transmitted and also to appear on the serial monitor output

screen, if so enabled. Figure 10-15 is a screen capture of the serial monitor screen.

Send

CEEEEEELEE I R E I A E A - X X

| Autoscroll No line ending 2 9600 baud -

Remote sensor hub serial monitor screen.

You should be able to see the few 1’s that appear on the screen when I waved my hand

in front of the PIR sensor.

The next step in the systems test was to confirm that the main controller XBee
transceiver was receiving and processing the data sent from the remote sensor hub. I
again used the serial monitor to review the received characters. Figure 10-16 is a screen

capture of that serial monitor being run on the host RasPi.

/dev/ttyACMO (Arduino/Genuino Uno) - 0

Received: B85 | &
GPIO trigged
Received: 85
GPIO trigged
Received: @
Received: 85
GPIO trigged
Received: 48
Received: 85
GPIO trigged
Received: @
Received: 48
Received: 48
Received: 85
GPIO trigged '

v

vl Autoscroll (] Show timestamp |Na lineending | v | {9600 baud v | | Clear output

Main controller serial monitor screen.

You should be able to see all the GPIO trigger events that I generated by waving my
hand in front of the PIR sensor. The displayed messages result from debug print

statements that I placed in the development code and are not shown in the book listing.

At this point I have confirmed a working wireless communications link between the
remote sensor hub and the main controller. The next step is test the response action of
the RasPi on detecting an event sent by the remote sensor hub. This would mean
installing and running the Python script described earlier. However, you must first pair
the TauTronics module with the Home device in order to determine whether the audio
file is successfully transmitted from the RasPi to the Home device. I accomplished this
pairing operation quite easily using the Google Home app installed on my smartphone.
The process is quite simple in that you first put the Home device in pairing mode using
the app. The app quickly discovers the TauTronics device, and you click on the app,

confirming that you want to pair it. That’s all that is needed for the pairing.

The Python script can now be run once the pairing operation is finished. Just load the

script into the RasPi and run this command:
sudo python receiveTest.py

I was most pleased when I heard the alert “music” coming from the Home device after
waving my hand in front of the PIR sensor. This last action completes the system tests,
but I am not quite finished with this project because I have to discuss how to integrate
the Web portion with the non-Web software.

Integrating All the Software

I provided a detailed discussion and demonstration of how to enable a security system
using a voice command through a Home device. I next showed how to create a
distributed security system in which a remote sensor triggered by infrared energy in a
space could subsequently trigger an audio alert in a Home device. What I haven’t
discussed is how to tie the Web actions to the distributed security system. This is
actually a difficult problem because of the nature of the two concurrently running
processes. One process is the RasPi Web server, which is constantly monitoring an
incoming HTTP port and responding to any valid Web requests sent by the Home
device. The other process is essentially a forever loop in the Python script that is
constantly polling to check on the state of a specific GPIO pin. These processes are
mutually exclusive and basically cannot run simultaneously. After much
experimentation, I finally arrived at a partial solution, which is to use a semaphore or
flag, which would be used as a signal between the two processes. This flag is only a
single character, either a 0 or a 1, and is stored in an external data file I named
outdata.txt. The Web server would store a 1 in the data file whenever it received a Web
request to enable the security system. Likewise, it would store a 0 in the data file

whenever the disable Web request was received.

Meanwhile, the Python script was modified to read the flag from the data file and only
take action if the flag was set to 1. The critical modification I needed was to execute the
Python script from within the Web server software whenever the security system was
enabled by voice command. This modification worked, and I was able to run the
complete system and generate alerts whenever the PIR sensor triggered. Unfortunately,
I was not able to reinstate the Web server process once I initiated the Python script
process. This is likely due to some complex interactions taking place at the Linux kernel
level. This limitation is not too critical because all you need to do is reboot the RasPi,

and it will restart the Web server without any issues.

The modified Web server script is listed next. I renamed it securityTestExtended to
differentiate it from the previous version. Note that I removed many of the URL

extensions not required for this project.

Using RPi.GPIO and Flask for this script
import RPi.GPIO as GPIO

from flask import Flask

import os

GPIO.setwarnings(False)
app = Flask(_name)

This method is invoked when an "/turnonsecurity" extension is detected
@app.route("/turnonsecurity", methods=['GET', 'POST'])
def EnableSecuritySystem():
ocoutf = open('outdata.txt', 'w')
GPIO.setmode (GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
print "Enabling the security system"
GPIO.output(1l8, GPIO.HIGH)
outf.write('{}'.format(1))
outf.close()
Execute the Python script running the security system
os.system('sudo python receiveTestExtended.py')

return "Security system enabled"

This method is invoked when an "/turnoffsecurity" extension is detected
@app.route("/turnoffsecurity", methods=['GET', 'POST'])

def DisableSecuritySystem():
outf = open('outdata.txt’', 'w')

GPIO.setmode (GPIO.BCM)

GPIO.setup(18, GPIO.OUT)

print "Disabling the security system'

GPIO.output (18, GPIO.LOW)

outf.write('{}'.format(0))

outf.close()

return “Security system disabled”

L1} i1

if name == "_main_":

app.run(host='0.0.0.0"', port=80, debug=True)

I have also listed the modified Python script below. It was renamed

receiveTestExtended.py to differentiate from the earlier version.

import time
import RPi.GPIO as GPIO
import os

Semaphore

outf = open('outdata.txt"', 'r')

vall0 = outf.read()

inPin = 12

GPIO.setmode (GPIO.BCM)
GPIO.setup(inPin,GPIO0.IN)

while True:

Check if the GPIO pin is high

vall = GPIO.input(inPin)

if val0 == '1l' and vall == 1:
Play the alert "music" through
the Bluetooth module
os.system('omxplayer -o local

Wake.mda')

time.sleep(2)

It is my belief that it would be possible to have both processes running concurrently by
incorporating a multithreaded approach. This approach would be quite complicated
and probably unwarranted considering that this is a maker-style project and should be

kept to a moderate level of complexity.

Extensions and Modifications

This security system obviously can be extended by adding additional sensors. The Web
side of the code would not have to change, but the Python script controlling the system
would have to be extended to incorporate all new sensors. These extensions would be
easy if the sensors were binary, meaning on or off, just like the PIR sensor. However,
the XBee system is fully capable of sending significant data over the link instead of
simple 1’s and 0’s. In this case, it would not be hard to use analog sensors with the

security system, including temperature or humidity sensors. In addition, you could

easily add distance-measurement sensors such as Lidar units, which I have discussed in

some of my other project books.

The system software could also be modified to incorporate a logging feature, where
system status would be stored periodically in a log file along with a time stamp. This
would provide a useful long-term feature for users wanting to examine the system

environment over a prolonged period.

SUMMARY

I started this chapter on HA security systems with a discussion of the basic concepts to
be considered when designing and building a home security system. The nature of risk
was examined, and I pointed out that while some things must be protected, others can
be left alone because any adverse event associated with those items would be of low

probability and not cost that much.

A discussion regarding the chapter’s project was next. This project involved a remotely
mounted PIR sensor that was wirelessly connected to a RasPi controller. The whole

system was turned on or enabled by a voice command spoken to a Google Home device.

I next discussed the overall system design, and the requirements were carefully
detailed. Then a plan was created to meet those requirements. I also included a detailed
discussion of the XBee electronics used to implement the wireless link between the

remote sensor hub and the RasPi main controller assembly.

Several sections followed that included discussions concerning implementation of the
hardware and software required for the system. There was also a discussion of how to
set up the RasPi Web server software and associated Web applets needed for the voice
control aspect of the project. This part of the discussion was based largely on the

material presented in Chapter 2.

I next went through a comprehensive procedure regarding the Arduino and RasPi
software required to operate the system. An initial systems test was shown, and the
system was first enabled with a voice command, the PIR sensor was triggered, and
finally, an alert (actually a music file) was heard from the Home device. I finished the
chapter with a discussion of possible system extensions and modifications that

reasonably could be made to further enhance the system.

Integrated Home Automation Systems

I HAVE DISCUSSED A VARIETY of HA systems in this book. They hopefully will be
useful on their own, but they are specific to certain tasks such home HVAC or security.
This brief chapter should provide you with an overview of useful concepts needed to tie

different systems together.

The term integration is often used to describe this tying operation. It is also common in
the HA community or industry to consider specific HA system as subsystems when
considering building an overarching HA control system. The question obviously arises
as to how this integration can be achieved considering that various subsystems can

have widely different controller architectures and underlying software platforms.

The answer is that there is no one solution that solves this problem. HA manufacturers
have developed and marketed many different solutions, but most have tended to have
the unsatisfactory approach of simply buying all the subsystems from their own brand
and not having to worry about different protocols or hardware interfaces. I personally
find this approach rather unpleasant and perhaps very expensive if you have already
invested in a nonhomogeneous mix of subsystems. I propose a significantly different

approach that I have borrowed from the field of software design patterns.

ADAPTERS

We have all encounter adapters of one sort or another in our daily lives. One common
adapter that you might not think as an adapter is the closed-captioning (CC) feature
found on most modern TVs. CC is needed for TV users who are either hard of hearing

or deaf. It adapts the normal TV audio output to a form suitable for the hearing-
impaired user. Now consider the shapes shown in Figure 11-1.

https://avxhm.se/blogs/hill0

mounir
Typewriter
https://avxhm.se/blogs/hill0

Incompatible shapes.

Trying to fit these two shapes together is simply not possible. However, if you introduce
a third shape into the figure, as shown in Figure 11-2, it suddenly is possible to fit all the
parts together.

Adapter

Incompatible shapes with an adapter.

This new part is called an adapter, and it fixes the previous incompatible fit problem.
The adapter solution is obvious when shown as a graphic in a figure, but it is not so
obvious when considered as a programming or coding effort. The takeaway from this
example is that the adapter has two different interface views depending on which side
you view. Translated to programming terms, this means that the adapter code first
receives incoming data in a specified format compatible with the data source. It then
transforms that code into a format suitable for the outgoing data sink, inserting
whatever “missing” pieces are required to match the output requirements. In most

cases, the adapter code is bidirectional; that is, the output sink becomes the input

source and the input source translates to an output sink.

There can be one big issue with this adapter approach, and it is directly related to how
the communication links are implemented between data sources and sinks. There
generally is no issue if data are sent and received using WiFi because the underlying
data formats are totally compatible between all sources and sinks. However, if the data
are communicated using a wireless specialized format such as analog RF, Z-Wave, or
the XBee technology, then the adapter approach becomes a bit more complex. The
data-source part of the adapter must then use compatible hardware to receive or
transmit data to the desired subsystem. It isn’t hard to do, but it does raise the overall
costs and difficulty in implementing the system. Fortunately, many commercial
subsystems being manufactured today exclusively use WiFi for data links, so this is not
a real concern. It is just something you should keep in mind when selecting subsystems

for a total HA solution.

ONE-STOP CONTROL

It only makes logical sense to have a single point of control for an HA system, or what I
refer to as one-stop control. This control point can be implemented in a variety of ways
from a tablet-like touch panel device as shown in Figure 11-3 to personal voice

assistants such as the Amazon Echo device or the Google Home device.

J.r.r...-.-'.l.;_.z'_j" dd=l yll

Honeywell Tuxedo Touch HA system controller.

Creating a one-stop solution has become quite easy if you elect to use a voice assistant

such as the Home device. Figure 11-4 shows just a few of the dozens of websites that are

available to support a vast array of manufacturer HA systems and services.

EQ@@@@

Hive Active .
Thermostat™ - US SmarTap Shower MIYO doneyvis iolng e

and Canada

ERRS) O
connecT
innogy SmartHome Home Connect Hood Noonlight Luxafor

zone Thermostat D-Link Smart Plug

=0 4
HOME e “!)
COoNNecT T
-
| WASHER \, y

Home Connect -
Washer Thinga Homey Wolfram Data Drop

D © 33 6| =

Sample of the dozens of readily available Web request websites.

It has become an almost trivial effort to set up applets to voice control a vast array of
diverse HA subsystems using the procedures I detailed in Chapter 2. I believe that a
similar effort using touch panel control devices likely would be more difficult than
voice-controlled devices. This is due in large part to the immense popularity of the voice
devices and HA manufacturers’ desire to participate in this huge potential and actual
market. There is one voice assistant device that combines both voice commands and

video technology. This device is Amazon’s Echo Show, which is pictured in Figure 11-5.

Amazon’s Echo Show.

This device has ready access to dozens of manufacturer-provided Alexa Skills, which
are basically equivalent to the applets created for the Google Home devices. Again, I
believe that it would be very easy to create a one-stop solution using the Echo Show,

which has an added advantage of including a visual component to HA system control.

SHARED SENSORS AND ACTUATORS

It makes perfect sense to share sensors among HA subsystems to help minimize cost
and increase overall efficiency. For example, sharing light sensors between security and
HVAC subsystems would likely be possible because both employ the same sensor types,
but for different reasons. The success in sharing depends primarily on how a particular
sensor connects with a given subsystem. For instance, if a sensor uses WiFi to
broadcast or publish its data, then any properly equipped subsystem can receive or
subscribe to those data without issue or conflict with other subsystems. By contrast,
sharing would be very problematic if a sensor is hardwired and uses a proprietary
communications protocol to link to a particular subsystem. I also suggest that the
chances of successfully sharing sensors would be greatly improved by selecting HA
subsystems made by the same manufacturer. There always exist the possibilities of
inherent incompatibilities in sensor usage even with wireless devices using
standardized communications protocols such as WiFi or Bluetooth. HA manufacturers

sometimes do not carefully comply with implementing published standards despite

advertising that their sensors are compliant with a particular standard.

Sharing actuators is often an easier task than sharing sensors. This is due to the fact
that most actuators simply respond to commands rather than generating data. For
example, an architectural lighting control subsystem might employ a variety of light
sources including incandescent, compact fluorescent, halogens, and LEDs, which may
also be required to be dimmed and/or brightened to preset levels. A security subsystem
likewise might employ the same types of light sources to illuminate an area based on
any trigger events detected by the subsystem. Sharing the same lighting actuators
between the systems is easily accomplished using well-known control circuits that
provide isolation between connected subsystems but still accomplishing similar goals
such as energy savings, providing visual interest, enhancing security, or just plain

setting a mood for certain occasions.

SCRIPT AUTOMATION

It is often the case that an HA system provides a prescribed set of actions, which may be
based on the time of day or user-requested actions. For instance, a user arriving home
after a busy workday may very well want and deserve the HA system to set the home
temperature to an appropriate occupancy level, start playing a favorite song through an
AV system, close automated blinds/shades, set room lighting, and other user-desired
tasks. The integrated HA system should follow a script that initiates these various
subsystem tasks based on time of day, a trigger event, or manual activation. This type of
script is also known as a macro in HA terminology and simply consists of a list of
prestored subsystem commands with appropriate argument values. The commands are
typically executed in serial fashion because some tasks are predicated on the successful

completion of a prior task.

A script must be carefully constructed to accommodate abnormal events that can and
will likely occur. For instance, it may happen that the AV subsystem has a problem
preventing the favorite song from being played. This situation should not hinder the
script from starting and completing all the other tasks contained in the script. The user

should also be notified of the partial failure happening within the automated script.

One ideal goal of an automated script would be that a single button press or voice
command could create the perfect ambiance for a dinner party, a romantic evening at
home, or a party of friends on a back patio or deck. You should have no problem finding
the appropriate music or video that you will enjoy when your AV equipment is managed
by a HA subsystem. On command, the room lights dim, the shades close, and the

appropriate equipment turns on. All you need to do is relax and enjoy the scene.

ADDITIONAL SUBSYSTEMS THAT MAY BE AUTOMATED

The previously mentioned subsystems are among the most popular ones to be
controlled by an integrated and automated HA system. However, just about any
product or system that uses electrical or battery power can also be integrated into an

HA system. Some of these systems include but are not limited to

m Garage doors

m Swimming pools and spa systems

m Motorized security gates

m Video doorbells

m Electronic door locks

m Any motorized equipment (e.g., drapes, blinds, home theater screens)
m Irrigation systems

m Artificial ponds with waterfall features

m Decorative fountains

Al AND HA

I already discussed an important Al topic, namely fuzzy logic (FL), in Chapter 8, where
FL was used to control an HA HVAC system. However, Al can have a far greater impact
regarding HA systems. Classification, prediction, and pattern recognition are some of
the key functionalities that can be accomplished using Al I will start with pattern

recognition and how it might be used in an HA system.

Suppose that you repeatedly invoke a particular script every workday but also modify it
by including some additional tasks such as playing a new song or perhaps controlling
some extra lighting not included in the original script. An HA controller equipped with
Al capabilities will notice the repeated modifications to an existing script and query you
on whether or not you would like to modify the script such that you will not have to
manually input the additional tasks each time the script executes. Pattern recognition is
clearly involved in this process, and technically, another Al feature called genetic
programming (GP) also would be involved. GP happens when a program automatically

creates or modifies another program. Often GP uses random mutations in an effort to

improve on an existing program in some fashion; however, in this situation, the
modifications are already clearly defined and can take place without the need for

random permutations.

Classification is another important Al topic that is also directly relevant to an HA
application. Suppose that you have a video doorbell connected to an HA controller
equipped for video image recognition. The system could then analyze a facial image and
immediately invoke a script associated with that image. Imagine a situation where a
couple shares a home. The husband or first significant other could arrive home first,
and a script associated with that person would be run. Similarly, the second person in
the relationship could arrive first, and a script associated with that person would be
run. Of course, it would be a tossup if both arrived simultaneously, and the system
might be programmed to do a random draw in order to determine which script would

be run.

Video classification also may be appropriate in a security subsystem in which a sensor
has been triggered by some unknown “intruder.” The system could attempt to classify
the intruder as human or nonhuman and take appropriate actions. If the intruder is
human, there could be another attempt at facial recognition in order to ascertain
whether the intruder was in fact a known entity or completely unknown. If unknown,
the system would next take appropriate steps at notifying authorities and generating
alarm sounds and/or voice alerts. A simple greeting would be generated if the target
was identified. For nonhuman intruders, a warning sound might be generated to scare
off the animal, unless the system included image recognition of family pets or obviously

nonthreatening animals such as rabbits.

Prediction is the last Al topic I will discuss regarding an HA system. Prediction, as the
name implies, means looking toward the future and trying to determine what is going
to happen in the near term. A reasonable example of using prediction in an HA system
would be employing an outside temperature sensor to help predict how to optimally
operate an HVAC system. If the outside temperature is falling rapidly, the system could
accurately predict that it might need to go into an aggressive heating mode. Similarly, if
the temperature is rising rapidly, the system would counteract by entering a rapid

cooling mode.

These examples just scratch the surface on how applied Al could improve an HA
system. I recommend my book, Beginning Artificial Intelligence with the Raspberry

Pi, if you want to learn more about Al and how it can be done using only a RasPi.

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11

